Baibhab Bose
				
				
			 
			
	
	
	
		
	
	
			
		
		
			
			
				- 34
 
- 3
 
- Homework Statement
 - A particle in a one-dimensional harmonic oscillator potential is described by a wave-function Psi(x,t)
߰ If the wavefunction changes to ߰Psi(Lambda*x ,t) the expectation value of kinetic energy ܶ
and the potential energy ܸ will change, respectively, to 
- Relevant Equations
 - The Schrodinger equation
 
The wavefunction is Ψ(x,t) ----> Ψ(λx,t)
What are the effects on <T> (av Kinetic energy) and V (potential energy) in terms of λ?
From ## \frac {h^2}{2m} \frac {\partial^2\psi(x,t)}{\partial x^2} + V(x,t)\psi(x,t)=E\psi(x,t) ##
if we replace x by ## \lambda x ## then it becomes ## \frac {h^2}{2m} \frac {\partial^2\psi(\lambda x,t)}{\partial x^2}\frac {1}{\lambda^2} + \lambda^2 V(\lambda x,t)\psi(\lambda x,t)=E\psi(\lambda x,t) ##
so would the argument be like, to keep the energy as it is the first term should be neutralized by and extra ##\lambda^2## term in the average KE (interpretation of the first term). and similarly V(##\lambda x ,t)## should be divided by ##\lambda^2## ?
and again, why should I assume that the total energy remains same?
				
			What are the effects on <T> (av Kinetic energy) and V (potential energy) in terms of λ?
From ## \frac {h^2}{2m} \frac {\partial^2\psi(x,t)}{\partial x^2} + V(x,t)\psi(x,t)=E\psi(x,t) ##
if we replace x by ## \lambda x ## then it becomes ## \frac {h^2}{2m} \frac {\partial^2\psi(\lambda x,t)}{\partial x^2}\frac {1}{\lambda^2} + \lambda^2 V(\lambda x,t)\psi(\lambda x,t)=E\psi(\lambda x,t) ##
so would the argument be like, to keep the energy as it is the first term should be neutralized by and extra ##\lambda^2## term in the average KE (interpretation of the first term). and similarly V(##\lambda x ,t)## should be divided by ##\lambda^2## ?
and again, why should I assume that the total energy remains same?