kai sinclair
- 29
- 1
okay this is what I can get one my own
$$ \left( \sum (L_n cos(\theta_n - \theta_t)) \right)^2 = \left( \sum (L_n sin (\theta_n)) \right)^2 + \left( \sum (L_n cos(\theta_n)) \right)^2 $$
$$ \left( \sum (L_n cos(\theta_n - \theta_t)) \right)^2 / \left( \sum (L_n) \right)^2 = \left( \left( \sum (L_n sin (\theta_n)) \right)^2 + \left( \sum (L_n cos(\theta_n)) \right)^2 \right) / \left( \sum (L_n) \right)^2 $$
$$ \left( \sum (cos(\theta_n) cos(\theta_t) + sin(\theta_n) sin(\theta_t)) \right)^2 = \left( \sum (sin (\theta_n)) \right)^2 + \left( \sum (cos(\theta_n)) \right)^2 $$
$$ \left( \sum (cos(\theta_n) cos(\theta_t)) + \sum (sin(\theta_n) sin(\theta_t)) \right)^2 = \left( \sum (sin (\theta_n)) \right)^2 + \left( \sum (cos(\theta_n)) \right)^2 $$
$$ \left( cos(\theta_t) \sum (cos(\theta_n)) + sin(\theta_t) \sum (sin(\theta_n)) \right)^2 = \left( \sum (sin (\theta_n)) \right)^2 + \left( \sum (cos(\theta_n)) \right)^2 $$
$$ \left( cos(\theta_t) \sum (cos(\theta_n)) \right)^2 +2 cos(\theta_t) \sum (cos(\theta_n)) sin(\theta_t) \sum (sin(\theta_n)) + \left( sin(\theta_t) \sum (sin(\theta_n)) \right)^2 = \left( \sum (sin (\theta_n)) \right)^2 + \left( \sum (cos(\theta_n)) \right)^2 $$
$$ \left( \sum (L_n cos(\theta_n - \theta_t)) \right)^2 = \left( \sum (L_n sin (\theta_n)) \right)^2 + \left( \sum (L_n cos(\theta_n)) \right)^2 $$
$$ \left( \sum (L_n cos(\theta_n - \theta_t)) \right)^2 / \left( \sum (L_n) \right)^2 = \left( \left( \sum (L_n sin (\theta_n)) \right)^2 + \left( \sum (L_n cos(\theta_n)) \right)^2 \right) / \left( \sum (L_n) \right)^2 $$
$$ \left( \sum (cos(\theta_n) cos(\theta_t) + sin(\theta_n) sin(\theta_t)) \right)^2 = \left( \sum (sin (\theta_n)) \right)^2 + \left( \sum (cos(\theta_n)) \right)^2 $$
$$ \left( \sum (cos(\theta_n) cos(\theta_t)) + \sum (sin(\theta_n) sin(\theta_t)) \right)^2 = \left( \sum (sin (\theta_n)) \right)^2 + \left( \sum (cos(\theta_n)) \right)^2 $$
$$ \left( cos(\theta_t) \sum (cos(\theta_n)) + sin(\theta_t) \sum (sin(\theta_n)) \right)^2 = \left( \sum (sin (\theta_n)) \right)^2 + \left( \sum (cos(\theta_n)) \right)^2 $$
$$ \left( cos(\theta_t) \sum (cos(\theta_n)) \right)^2 +2 cos(\theta_t) \sum (cos(\theta_n)) sin(\theta_t) \sum (sin(\theta_n)) + \left( sin(\theta_t) \sum (sin(\theta_n)) \right)^2 = \left( \sum (sin (\theta_n)) \right)^2 + \left( \sum (cos(\theta_n)) \right)^2 $$
Last edited: