Efficient Logarithmic Calculations for 0.3048 without a Calculator

  • Thread starter Thread starter RChristenk
  • Start date Start date
  • Tags Tags
    Logarithm
AI Thread Summary
The discussion focuses on calculating the logarithm of 0.3048 without a calculator, breaking it down into its prime factors and logarithmic components. The main challenge is finding the value of log(127), leading to various approximations being suggested, including using log(126) and log(128) for interpolation. Participants explore the feasibility of approximating log(127) as 7 log(2) and discuss the implications of these approximations. The conversation highlights the uncertainty around which approximation is more accurate or expected. Overall, the thread emphasizes the complexity of logarithmic calculations and the potential for using approximations to solve problems without direct computation.
RChristenk
Messages
73
Reaction score
9
Homework Statement
Given ##\log2=0.3010300##, ##\log3=0.4771213##, ##\log7=0.8450980##, find ##\log0.3048##
Relevant Equations
Logarithm rules
##0.3048=\dfrac{3048}{10000}=\dfrac{2^3\cdot3\cdot127}{10^4}##

##\log0.3048=\log(\dfrac{2^3\cdot3\cdot127}{10^4})##

##\Rightarrow 3\log2+\log3+\log127-4\log10##

I don't have the value for ##\log127##, and this problem is to be solved without a calculator. All the logarithms are base ##10##. I'm not sure how else to factorize ##0.3048##. Is there another way entirely or some artificial artifice I can use here? Thanks.
 
Physics news on Phys.org
I'm not sure I'd worry about this problem. I can't see a solution.
 
As an approximation, can you use ##2^8 = 128##? CORRECTION: ##2^7=128##
##2^3*3*128 = 3072##.
 
Last edited:
FactChecker said:
As an approximation, can you use ##2^8 = 128##?
##2^3*3*128 = 3072##.
But then, what's ##\log 7## for?

##126##?

Both?
 
  • Like
Likes FactChecker
Hill said:
But then, what's ##\log 7## for?

##126##?

Both?
Good point! So both approximations are doable with the information given. I don't know which one was expected or better. It seems like 126 was expected.
 
FactChecker said:
Good point! So both approximations are doable with the information given. I don't know which one was expected or better. It seems like 126 was expected.
Or you could do both approximations and interpolate.
 
FactChecker said:
Good point! So both approximations are doable with the information given. I don't know which one was expected or better. It seems like 126 was expected.
Maybe, the midpoint between ##\log 126## and ##\log 128##.
 
  • Like
Likes FactChecker
FactChecker said:
As an approximation, can you use ##2^8 = 128##?
##2^3*3*128 = 3072##.
##2^8=256.## It's ##\log 127 \approx 7\log 2.##
 
  • Like
Likes FactChecker
fresh_42 said:
##2^8=256.## It's ##\log 127 \approx 7\log 2.##
Thanks! I stand corrected and will note that in the post.
 
Back
Top