Hi everyone,(adsbygoogle = window.adsbygoogle || []).push({});

I tried to find the Eigenstate of the angular momentum operator myself, more specifically I tried to find a Function [itex]Y_{lm}(\theta,\phi)[/itex] with

[tex]L_zY_{lm}=mħY_{lm}[/tex] and [tex]L^2Y_{lm}=l(l+1)ħ^2Y_{lm}[/tex]

where [tex]L_z=-iħ\frac{\partial}{\partial \phi}[/tex]

and [tex]L^2=-ħ^2(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial}{\partial\theta})+\frac{1}{\sin^2\theta}\frac{\partial^2}{\partial^2\phi})[/tex]

These representations can be found here.

Now lets look at the simple case of [itex]m=l=0[/itex]. The standard solution here is [itex]Y_{00}(\theta,\phi)=\frac{1}{\sqrt{4\pi}}[/itex]. However, it seems like the function [itex]Y_{00}(\theta,\phi)=A\ln(\cot\theta+\csc\theta)[/itex] is as well a solution to the differential equations above, since [itex]\frac{\partial Y}{\partial \phi}=0=mħY[/itex] and [itex]\frac{\partial Y}{\partial \theta}=-A\csc\theta[/itex] and therefore [tex]L^2Y=-ħ^2(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}(-A \sin\theta\csc\theta))=0=l(l+1)ħ^2Y[/tex]

Since [tex]\int_0^\pi YY^*\sin\theta d\theta[/tex] converges (you can look at the graph here) it is possible to find an [itex]A[/itex] that normalizes [itex]Y_{00}[/itex].

So where is the mistake? I did not find this solution anywhere.

Thank you for your help :)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Eigenfunctions of the angular momentum operator

**Physics Forums | Science Articles, Homework Help, Discussion**