Eigenvalue of position operator and delta function.

  • Thread starter maser
  • Start date
  • #1
3
0

Main Question or Discussion Point

I'd like to show that if there exists some operator [itex] \overset {\wedge}{x} [/itex] which satisfies [itex] \overset {-}{x} = <\psi|\overset {\wedge}{x}|\psi> [/itex], [itex] \overset {\wedge}{x}|x> = x|x> [/itex] be correct.

[itex]\overset {-}{x} = \int <\psi|x> (\int<x|\overset {\wedge}{x}|x'><x'|\psi> dx')dx = \int <\psi|x> (x<x|\psi>)dx = \int <\psi|x> (x\int<x|x'><x'|\psi> dx')dx[/itex]

So I concluded that [itex]<x|\overset {\wedge}{x}|x'> = x<x|x'>[/itex] and if we factor out x' I can get [itex]<x|\overset {\wedge}{x} = x<x|[/itex] but not [itex] \overset {\wedge}{x}|x> = x|x>. [/itex]

However, fortunately I could find a book saying,

"[itex]<x|\overset {\wedge}{x}|x'> = x\delta(x-x') [/itex] where [itex]\delta(x-x') = <x'|x>[/itex]. Then you can work out the result that [itex] \overset {\wedge}{x}|x> = x|x>. [/itex]"

I was confused by the definition of delta function in this book and confirmed [itex]\delta(x-x') = <x|x'> [/itex] in some documents on the internet. But I cannot convince myself that the definition [itex]\delta(x-x') = <x'|x>[/itex] is an error of the book, because the definition is used in the book many times. Furthermore the book don't have any ideas of hermitian operators.

Here, I come to have two questions.

1. [itex]\delta(x-x') = <x|x'> or <x'|x> ? [/itex] Which is correct answer?
2. How to prove [itex] \overset {\wedge}{x}|x> = x|x> [/itex] from [itex]<x|\overset {\wedge}{x}|x'> = x\delta(x-x') [/itex] without the properties of hermitian operator?
 
Last edited:

Answers and Replies

  • #2
George Jones
Staff Emeritus
Science Advisor
Gold Member
7,313
861
What is the relation between [itex]\delta(x-x')[/itex] and [itex]\delta(x'-x)[/itex]?
 

Related Threads on Eigenvalue of position operator and delta function.

  • Last Post
Replies
10
Views
9K
  • Last Post
Replies
8
Views
2K
  • Last Post
Replies
3
Views
1K
Replies
5
Views
1K
Replies
1
Views
564
  • Last Post
Replies
12
Views
2K
Replies
2
Views
2K
Replies
5
Views
1K
Replies
3
Views
1K
Top