Understanding Eigenvalues and Determinants with Repeated Multiplicities

Click For Summary
The discussion focuses on proving that the determinant of an nxn matrix A, which has n real eigenvalues with multiplicities, equals the product of its eigenvalues. Participants clarify that 'repeated according to multiplicities' refers to the eigenvalues being roots of the characteristic polynomial, where the multiplicity indicates how many times each eigenvalue appears. The characteristic polynomial is expressed as det(lambda*I - A), leading to the conclusion that setting lambda to zero yields the determinant of A as the product of its eigenvalues. The conversation emphasizes the relationship between the roots of the polynomial and the determinant, confirming that this approach is valid despite concerns about the signs. Ultimately, the proof hinges on understanding the characteristic polynomial and its roots.
Jennifer1990
Messages
55
Reaction score
0

Homework Statement


Let A be an nxn matrix, and suppose A has n real eigenvalues lambda_1, ...lambda_n repeated according to multiplicities. Prove that det A = lambda_1...lambda_n


Homework Equations


None


The Attempt at a Solution


Could someone explain what is meant by 'repeated according to multiplicities'? and give me a hint as to how to start this proof? thank u ~~
 
Physics news on Phys.org
The eigenvalues are the roots of the characteristic polynomial p(lambda)=det(I*lambda-A), the multiplicity of the eigenvalue is the multiplicity of the root. E.g. (lambda-1)^2 has a root 1 of multiplicity 2. Roots of polynomials correspond to linear factors of the polynomial. Think about how to find p(0).
 
Last edited:
to find p(0), i wud just sub 0 in the place of every variable and solve. I will be left with a constant, if there is a one
Is this wat u r asking? but how does this relate to the question? =S
 
I'm asking you to write out the characteristic polynomial in terms of lambda and lambda_1...lambda_n. Then think about what constant you get if lambda=0. How is it related to lambda_1...lambda_n? And how is that constant related to det(A)?
 
How can i write our the characteristic polynomial if we're dealing with a general nxn matrix?
 
You know the eigenvalues. E.g. if lambda_1 is a eigenvalue, then it's a root of the characteristic polynomial p(lambda). That means p(lambda) has a factor (lambda-lambda_1), right? Remember what you know about how roots of polynomials are related to factors of polynomials.
 
the factors of polynomials are the roots of the polynomials

i think...
det(A)=(lambda-lambda_1)(lambda-lambda_2)...(lambda-lambda_n) so the eigenvalues are lambda_1...lambda_n
 
Ok, but that's not quite det(A), it's det(lambda*I-A). det(A) doesn't have a lambda in it. So if lambda=0 on both sides what do you get?
 
ohhhhhh i think i got it now

det(A-lambda*I) =(lambda-lambda_1)(lambda-lambda_2)...(lambda-lambda_n)
if lambda =0, then we have
det(A) =(lambda_1)(lambda_2)...(lambda_n)

but, can we just set lambda = 0 like that?
 
  • #10
Yes, you can. But you have to pay attention to the minus signs. And the characteristic polynomial is det(lambda*I-A). det(A) and det(-A) are different. But that's pretty close.
 

Similar threads

Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
7
Views
1K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K