1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Eigenvalues / eigenvectors concept explaination please!

  1. Nov 10, 2011 #1

    Ush

    User Avatar

    Hello
    This is a concept question I do not understand. I'm just wondering why the answer is what it is. (the answer is written below the question, I just have no idea where it comes from)

    attachment.php?attachmentid=40837&stc=1&d=1320957609.png
     

    Attached Files:

    • h1.PNG
      h1.PNG
      File size:
      96.7 KB
      Views:
      90
  2. jcsd
  3. Nov 10, 2011 #2
    For a, you have to know that complex eigenvalues come in conjugate pairs. That is, if a + bi is an eigenvalue of a matrix A, then so is a - bi. The same goes for eigenvectors. If an eigenvector has entries (a, b + ci) then there is another eigenvector with entries (a, b - ci).

    For b, you have to know a couple of things.

    A square matrix A is invertible if and only if its column vectors are linearly independent. This is equivalent to saying that a square matrix A is invertible if and only if there are no nontrivial solutions to the equation Ax = 0 (this is because Ax is a linear combination of the column vectors of A).

    So then a matrix that is not invertible must have nontrivial solutions to Ax = 0. But in this case, you have found an eigenvector of A with eigenvalue 0. That means every matrix that is not invertible must have eigenvectors corresponding to eigenvalue 0.

    Another way to think about it, is that when you are looking for eigenvalues and solving |A - λI| = 0, you are looking for the values of λ that will make A - λI not invertible. But if A is not invertible, then clearly λ = 0 is a solution.

    Hope this helps.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Eigenvalues / eigenvectors concept explaination please!
Loading...