Eigenvalues of Hamiltonian operator

Juli
Messages
24
Reaction score
6
Homework Statement
Consider a system with two spin-1 particles, which is described by the Hamiltonian operator

## H = \lambda \vec{S}_1 \cdot \vec{S}_2 ##

with ##\lambda \in \mathbb{R} ##.

1. Express H in terms of the total spin ## \vec{S} = \vec{S}_1 + \vec{S}_2 ##.

2. What eigenvalues does H have and how are these degenerate?
Relevant Equations
##\vec{S}^2 = S(S+1)\hbar^2##
##\vec{S_1}^2 = S_1(S_1+1)\hbar^2##
##\vec{S_2}^2 = S_2(S_2+1)\hbar^2##
Hello, I try to solve this problem, and I think a) wasn't too hard, I have the following solution:

##H = \lambda (\frac{\vec{S^2-(\vec{S_1}^2+\vec{S_2}^2)}{2})##.
I struggle with 2. I find it very abstract. When I have H as a matrix I know how to calculate eigenvalues, but I don't know how to proceed with this general approach.

I tried to go somewhere with the eigenvalues of S, but I didn't get far...

Can someone help me solve this?
 
Physics news on Phys.org
Expand the right-hand side of the operator ##~S^2=(\vec S_1+\vec S_2)\cdot(\vec S_1+\vec S_2)~## and solve for the operator ##\vec S_1\cdot \vec S_2##. Its eigenvalues are the eigenvalues of the operator on the right-hand side.
 
I did the first task and got this ##H = \lambda (\frac{\vec{S^2-(\vec{S_1}^2+\vec{S_2}^2)}{2})##
But I don't know how to get the eigenvalues of the operator on the right-hand side. Are they the eigenvalues of the individual spins?
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top