Eigenvalues of Hamiltonian operator

Juli
Messages
24
Reaction score
6
Homework Statement
Consider a system with two spin-1 particles, which is described by the Hamiltonian operator

## H = \lambda \vec{S}_1 \cdot \vec{S}_2 ##

with ##\lambda \in \mathbb{R} ##.

1. Express H in terms of the total spin ## \vec{S} = \vec{S}_1 + \vec{S}_2 ##.

2. What eigenvalues does H have and how are these degenerate?
Relevant Equations
##\vec{S}^2 = S(S+1)\hbar^2##
##\vec{S_1}^2 = S_1(S_1+1)\hbar^2##
##\vec{S_2}^2 = S_2(S_2+1)\hbar^2##
Hello, I try to solve this problem, and I think a) wasn't too hard, I have the following solution:

##H = \lambda (\frac{\vec{S^2-(\vec{S_1}^2+\vec{S_2}^2)}{2})##.
I struggle with 2. I find it very abstract. When I have H as a matrix I know how to calculate eigenvalues, but I don't know how to proceed with this general approach.

I tried to go somewhere with the eigenvalues of S, but I didn't get far...

Can someone help me solve this?
 
Physics news on Phys.org
Expand the right-hand side of the operator ##~S^2=(\vec S_1+\vec S_2)\cdot(\vec S_1+\vec S_2)~## and solve for the operator ##\vec S_1\cdot \vec S_2##. Its eigenvalues are the eigenvalues of the operator on the right-hand side.
 
I did the first task and got this ##H = \lambda (\frac{\vec{S^2-(\vec{S_1}^2+\vec{S_2}^2)}{2})##
But I don't know how to get the eigenvalues of the operator on the right-hand side. Are they the eigenvalues of the individual spins?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top