A Eigenvalues of Hyperfine Hamiltonian

lelouch_v1
Messages
9
Reaction score
0
TL;DR Summary
Couldn't find the 8 eigenvalues of the problem
I was reading a paper on Radical-Pair mechanism (2 atoms with 1 valence electron each) and the author used the hyperfine hamiltonian $$H_{B}=-B(s_{D_z}+s_{A_z})+As_{D_x}I_x+As_{D_y}I_y+as_{D_z}I_z$$ and found the following eigenvalues: a/4 (doubly degenerate) , a/4±B , (-a-2B±2√(A^2+B^2)) , (-a+2B±2√(A^2+B^2))
What i used was the eigenvalue equation $$H{\ket{\psi}}=E{\ket{\psi}}$$ where ψ is a singlet and a triplet state, i.e. $$\ket{S}={\frac{1}{\sqrt{2}}}(\ket{\uparrow\downarrow}-\ket{\downarrow\uparrow})$$ $$\ket{T_1}=\ket{\uparrow\uparrow}$$ $$\ket{T_{-1}}=\ket{\downarrow\downarrow}$$ $$\ket{T_{0}}=\frac{1}{\sqrt{2}}(\ket{\uparrow\downarrow}+\ket{\downarrow\uparrow})$$ Using these states, i was able to get the first four eigenvalues. Since there are eight eigenvalues, should i right the terms in the hamiltonian as tensor products? Also, since I is the nuclear spin operator, do i take it always as 1/2 when in the z-direction, since i suppose that the nucleus is a hydrogen atom with one proton? Can i write the term $$As_{D_x}I_x+As_{D_y}I_y$$ in terms of the annihilation and creation operators, i.e. $$As_{+}I_{-}+As_{-}I_{+}$$ or is it wrong?
P.S.: In the hamiltonian, the subscript D is used for Donor and the subscript A for Acceptor.
 
Physics news on Phys.org
A:Let me try to answer some of your questions.The hyperfine Hamiltonian is usually written in terms of the spin operators, so you don't need to write it in terms of creation and annihilation operators. The $\hat{I}$ operator is usually written in terms of Pauli matrices $\hat{\sigma}$, so if $I=1/2$ then $\hat{I}_z = \sigma_z/2$. The terms $As_{D_x}I_x+As_{D_y}I_y$ are usually called the 'dipolar' term, and are a result of the dipole-dipole interaction between the electron spin and the nuclear spin. This term is often neglected because its contribution is much smaller than that of the Zeeman terms. To get all eight eigenvalues, you need to solve the full matrix equation $\hat{H}\psi = E \psi$. As you mentioned, the states $\psi$ can be chosen as the spin singlet and triplet states.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top