MHB Eigenvalues of similar matrices

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

If A=[R]*[diag(a1,a2,a3)]*[R]t can we conclude that a1,a2,a3 are the eigenvalues of A?(R is a rotation matrix)?
- We now that A is symmetric.
- R is a rotation matrix so it is orthogonal.
- [R]t is the transpose of R.

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
In general, if $A,B\in \mathbb{F}^{n\times n}$ are similar matrices then, $A$ and $B$ have the same characteristic polynomial, as a consequence the same eigenvalues. In our case we have:
$$A=R\text{ diag }(a_1,a_2,a_3)\;R^T=R\text{ diag }(a_1,a_2,a_3)\;R^{-1}$$
so, $A$ and $D=\text{diag }(a_1,a_2,a_3)$ are similar matrices. But the eigenvalues of $D$ are $a_1$, $a_2$ and $a_3$, hence the eigenvalues of $A$ are also $a_1$, $a_2$ and $a_3$.
 
Fernando Revilla said:
In general, if $A,B\in \mathbb{F}^{n\times n}$ are similar matrices then, $A$ and $B$ have the same characteristic polynomial, as a consequence the same eigenvalues. In our case we have:
$$A=R\text{ diag }(a_1,a_2,a_3)\;R^T=R\text{ diag }(a_1,a_2,a_3)\;R^{-1}$$
so, $A$ and $D=\text{diag }(a_1,a_2,a_3)$ are similar matrices. But the eigenvalues of $D$ are $a_1$, $a_2$ and $a_3$, hence the eigenvalues of $A$ are also $a_1$, $a_2$ and $a_3$.

Thank You. So just the sequence of eigenvalues changes. The main Problem is:
Det( diag(a1,a2,a3) + R diag(a1,a2,a3)RT - xI )=0 I rewrote it in this form:
Det( R diag (a1,a2,a3)RT - x*I )=0
which means eigenvalues of R diag(a1,a2,a3)RT are the new parameter x*=x-diag(a1,a2,a3)
can we say x-diag(a1,a2,a3)= diag(a1,a2,a3) or x=2 diag(a1,a2,a3)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top