MHB Eigenvalues of similar matrices

Click For Summary
The discussion centers on the eigenvalues of a symmetric matrix A expressed as A = R * diag(a1, a2, a3) * R^T, where R is an orthogonal rotation matrix. It is established that since A and D = diag(a1, a2, a3) are similar matrices, they share the same eigenvalues, which are a1, a2, and a3. The main problem involves determining the characteristic polynomial of A, specifically through the determinant equation Det(R * diag(a1, a2, a3) * R^T - xI) = 0. The discussion also explores the relationship between the eigenvalues and a new parameter x*, leading to questions about the values of x in relation to diag(a1, a2, a3). Ultimately, the eigenvalues of A remain a1, a2, and a3, despite potential transformations in the characteristic polynomial.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

If A=[R]*[diag(a1,a2,a3)]*[R]t can we conclude that a1,a2,a3 are the eigenvalues of A?(R is a rotation matrix)?
- We now that A is symmetric.
- R is a rotation matrix so it is orthogonal.
- [R]t is the transpose of R.

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
In general, if $A,B\in \mathbb{F}^{n\times n}$ are similar matrices then, $A$ and $B$ have the same characteristic polynomial, as a consequence the same eigenvalues. In our case we have:
$$A=R\text{ diag }(a_1,a_2,a_3)\;R^T=R\text{ diag }(a_1,a_2,a_3)\;R^{-1}$$
so, $A$ and $D=\text{diag }(a_1,a_2,a_3)$ are similar matrices. But the eigenvalues of $D$ are $a_1$, $a_2$ and $a_3$, hence the eigenvalues of $A$ are also $a_1$, $a_2$ and $a_3$.
 
Fernando Revilla said:
In general, if $A,B\in \mathbb{F}^{n\times n}$ are similar matrices then, $A$ and $B$ have the same characteristic polynomial, as a consequence the same eigenvalues. In our case we have:
$$A=R\text{ diag }(a_1,a_2,a_3)\;R^T=R\text{ diag }(a_1,a_2,a_3)\;R^{-1}$$
so, $A$ and $D=\text{diag }(a_1,a_2,a_3)$ are similar matrices. But the eigenvalues of $D$ are $a_1$, $a_2$ and $a_3$, hence the eigenvalues of $A$ are also $a_1$, $a_2$ and $a_3$.

Thank You. So just the sequence of eigenvalues changes. The main Problem is:
Det( diag(a1,a2,a3) + R diag(a1,a2,a3)RT - xI )=0 I rewrote it in this form:
Det( R diag (a1,a2,a3)RT - x*I )=0
which means eigenvalues of R diag(a1,a2,a3)RT are the new parameter x*=x-diag(a1,a2,a3)
can we say x-diag(a1,a2,a3)= diag(a1,a2,a3) or x=2 diag(a1,a2,a3)
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K