MHB Eigenvector of 3x3 matrix with complex eigenvalues

rayne1
Messages
32
Reaction score
0
Matrix A:
0 -6 10
-2 12 -20
-1 6 -10

I got the eigenvalues of: 0, 1+i, and 1-i. I can find the eigenvector of the eigenvalue 0, but for the complex eigenvalues, I keep on getting the reduced row echelon form of:
1 0 0 | 0
0 1 0 | 0
0 0 1 | 0

So, how do I find the nonzero eigenvectors of the complex eigenvalues?
 
Physics news on Phys.org
rayne said:
Matrix A:
0 -6 10
-2 12 -20
-1 6 -10

I got the eigenvalues of: 0, 1+i, and 1-i. I can find the eigenvector of the eigenvalue 0, but for the complex eigenvalues, I keep on getting the reduced row echelon form of:
1 0 0 | 0
0 1 0 | 0
0 0 1 | 0

So, how do I find the nonzero eigenvectors of the complex eigenvalues?

Hi rayne!

It means that 1+i and 1-i are not actually eigenvalues.
How did you conclude they were?
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top