- #51
TSny
Homework Helper
Gold Member
- 12,955
- 3,309
Using the fact that the relative speed of approach equals the relative speed of separation at each collision, you can iterate ##L_{i+1} = \frac{v_i-V_i}{v_i+V_i}L_i## to get
##L_{N+1} = \frac{V_0}{v_N+V_N}L_1##.
Suppose ##\small M## essentially comes to rest at the ##\small N^{th}## collision. Then to a good approximation
##L_{N+1} = L_{N} = L_{closest}## and ##V_{N}=0##. So,
##L_{closest} = \frac{V_0}{v_N}L_1##. Conservation of energy implies ##\frac{1}{2}MV_0^2 = \frac{1}{2}mv_N^2##. So, ##L_{closest} = \sqrt{\frac{m}{M}}L_1##
##L_{N+1} = \frac{V_0}{v_N+V_N}L_1##.
Suppose ##\small M## essentially comes to rest at the ##\small N^{th}## collision. Then to a good approximation
##L_{N+1} = L_{N} = L_{closest}## and ##V_{N}=0##. So,
##L_{closest} = \frac{V_0}{v_N}L_1##. Conservation of energy implies ##\frac{1}{2}MV_0^2 = \frac{1}{2}mv_N^2##. So, ##L_{closest} = \sqrt{\frac{m}{M}}L_1##