TSny
Science Advisor
Homework Helper
Gold Member
- 14,803
- 4,801
I'm not following your statement that v grows by 2v+1. If m << M, then the values of v for the first few collisions are approximately 2, 4, 6, 8, 10, etc. if the block was initially moving at 1 unit of speed. And I don't understand how you are getting some of your other numbers.
The following table shows what I get for the exact closest distance of approach and the approximate distance of closest approach according to Lclosest ≈ √(m/M), assuming the first collision occurs at 1 unit of distance from the wall:
$$ \frac{M}{m} = 3 \;\;\;\;\;\;\; L^{closest}_{exact} = 0.50000 \;\;\;\;\;\; L^{closest}_{approx} = 0.577$$ $$ \frac{M}{m} = 25 \;\;\;\;\;\; L^{closest}_{exact} = 0.19967 \;\;\;\;\;\; L^{closest}_{approx} = 0.200$$ $$ \frac{M}{m} = 100 \;\;\;\; L^{closest}_{exact}= 0.09979 \;\;\;\;\;\; L^{closest}_{approx} = 0.100$$ $$ \frac{M}{m} = 10000 \;\;\; L^{closest}_{exact}= 0.0099995 \;\;\; L^{closest}_{approx} = 0.010$$
The following table shows what I get for the exact closest distance of approach and the approximate distance of closest approach according to Lclosest ≈ √(m/M), assuming the first collision occurs at 1 unit of distance from the wall:
$$ \frac{M}{m} = 3 \;\;\;\;\;\;\; L^{closest}_{exact} = 0.50000 \;\;\;\;\;\; L^{closest}_{approx} = 0.577$$ $$ \frac{M}{m} = 25 \;\;\;\;\;\; L^{closest}_{exact} = 0.19967 \;\;\;\;\;\; L^{closest}_{approx} = 0.200$$ $$ \frac{M}{m} = 100 \;\;\;\; L^{closest}_{exact}= 0.09979 \;\;\;\;\;\; L^{closest}_{approx} = 0.100$$ $$ \frac{M}{m} = 10000 \;\;\; L^{closest}_{exact}= 0.0099995 \;\;\; L^{closest}_{approx} = 0.010$$