Electric field at a point from an insulating shell

Click For Summary
SUMMARY

The discussion centers on calculating the electric field at a point from an insulating shell surrounding an infinite line of charge. The linear charge density of the insulating shell, λ2, was determined to be -3.36E-6 C/m using the volume density ρ and the shell's geometry. For the y-component of the electric field at point P, located 8.3 cm from the line of charge, the user initially misapplied the point charge equation instead of Gauss' Law. The correct approach involves using the enclosed charge within the Gaussian surface to find the electric field accurately.

PREREQUISITES
  • Understanding of electric fields and charge distributions
  • Familiarity with Gauss' Law and its applications
  • Knowledge of linear charge density and volume charge density
  • Proficiency in calculus for integrating electric fields
NEXT STEPS
  • Study Gauss' Law applications in various charge configurations
  • Learn about electric field calculations for cylindrical symmetry
  • Explore the relationship between charge density and electric field strength
  • Review examples of electric fields from insulating materials
USEFUL FOR

Students in physics, electrical engineering, or anyone studying electromagnetism, particularly those focusing on electric fields and charge distributions.

rezal
Messages
5
Reaction score
0

Homework Statement


An infinite line of charge with linear density λ1 = 6.9μ C/m is positioned along the axis of a thick insulating shell of inner radius a = 2.6 cm and outer radius b = 4.8 cm. The insulating shell is uniformly charged with a volume density of ρ = -656μ C/m3
h4_cylinder.png

1)What is λ2, the linear charge density of the insulating shell?

2)What is Ey(P), the value of the y-component of the electric field at point P, located a distance 8.3 cm along the y-axis from the line of charge?

Homework Equations


1) E=\frac{1}{4\pi\epsilon_0} \frac{q_0}{r^2}
2) \int E \bullet dA = \frac{Q}{\epsilon_0}[/B]

The Attempt at a Solution


For 1, I found λ2 with \rho\pi(b^2 - a^2) and it turned out to be λ2 = -3.36E-6 C/m

I'm stuck on 2, I tried doing it by adding three electric fields. The first one in the shells' center using λ1 with equation 1, the second one in the shell using the charge from ρV with equation 2, and the third one in a cylindrical gaussian surface that has P on its surface with equation 2. I keep getting 1.8E8 C/m which is wrong.

Can someone tell me where I'm going wrong with this?[/B]
 
Physics news on Phys.org
rezal said:

Homework Statement


An infinite line of charge with linear density λ1 = 6.9μ C/m is positioned along the axis of a thick insulating shell of inner radius a = 2.6 cm and outer radius b = 4.8 cm. The insulating shell is uniformly charged with a volume density of ρ = -656μ C/m3
h4_cylinder.png

1)What is λ2, the linear charge density of the insulating shell?

2)What is Ey(P), the value of the y-component of the electric field at point P, located a distance 8.3 cm along the y-axis from the line of charge?

Homework Equations


1) E=\frac{1}{4\pi\epsilon_0} \frac{q_0}{r^2}
2) \int E \bullet dA = \frac{Q}{\epsilon_0}[/B]

The Attempt at a Solution


For 1, I found λ2 with \rho\pi(b^2 - a^2) and it turned out to be λ2 = -3.36E-6 C/m

I'm stuck on 2, I tried doing it by adding three electric fields. The first one in the shells' center using λ1 with equation 1, the second one in the shell using the charge from ρV with equation 2, and the third one in a cylindrical gaussian surface that has P on its surface with equation 2. I keep getting 1.8E8 C/m which is wrong.

Can someone tell me where I'm going wrong with this?[/B]

Equation 1 can not be used, as it refers to a point charge. Apply Gauss' Law (eq. 2 ) and remember, Q is the charge enclosed by the Gaussian surface.
 
ehild said:
Equation 1 can not be used, as it refers to a point charge. Apply Gauss' Law (eq. 2 ) and remember, Q is the charge enclosed by the Gaussian surface.
Ah alright, I got it now. Thank you!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
671
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 1 ·
Replies
1
Views
960
  • · Replies 23 ·
Replies
23
Views
2K
Replies
1
Views
2K
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
999