B Electric Field Created by 2 Infinite Plates

AI Thread Summary
The discussion focuses on the electric field generated by two infinite parallel plates using Gauss's law. The electric field from a single plate is given by E = σ/(2ε₀), and when considering two plates, the fields between them cancel each other out, resulting in a net electric field of zero. Outside the plates, the fields add constructively, leading to a total electric field of E = σ/ε₀. The principle of superposition applies, as electric fields from different sources combine due to the linearity of Maxwell's equations. This approach effectively demonstrates the behavior of electric fields in the presence of multiple charged plates.
Heisenberg7
Messages
101
Reaction score
18
Today, I watched a video about electric field created by an infinite plate by Khan Academy. They were talking about the clever application of the Gauss's law in this case (the cylinder method), so I wondered if I could apply the same thing but to 2 plates. For example, let's say that the plates are parallel. In this case the electric field created by one plate is ##E = \frac {\sigma}{2\epsilon_o}##. Since electric field is a vector quantity we can vectorially add up the electric field created by both plates. Between the plates the electric field created by one plate is opposite and equal to the electric field created by the other, thus if we vectorially add them up, we get 0. But on the left and right side, it's different. They have the same direction and magnitude at each point in space, thus the electric field at any point is ##E = \frac {\sigma}{\epsilon_o}##. Is this the correct way to think about this problem? (both plates have the same charge ##q##)
 
Physics news on Phys.org
Yes, electric fields generated from different sources add up to a superposition of the individual contributions. However, note that this is a result of the linearity of the governing differential equation, ie Gauss’ law or ultimately Maxwell’s equations. It does not follow solely from being a vector field.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top