Electric field of point along the central vertical axis of a triangle

Click For Summary

Homework Help Overview

The discussion revolves around calculating the electric field at a point along the central vertical axis of a triangle formed by charged particles. The original poster attempts to derive expressions for the electric field and analyze the motion of a charged particle in that field, referencing concepts from electrostatics and simple harmonic motion.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the symmetry of the problem and the resultant electric field components. There are attempts to derive equations for the electric field and the motion of a charged particle, with some questioning the variables used in the equations and the need for clarity in terms of single variable representation.

Discussion Status

Some participants provide feedback on the original poster's approach, suggesting that the equations should be expressed in terms of a single variable and questioning the assumptions made regarding constants. There is an ongoing exploration of the problem, with no explicit consensus reached on the correctness of the original poster's solution.

Contextual Notes

There are mentions of potential issues with the problem statement's clarity and the stability of the system described, as well as the need to adhere to specific formatting guidelines for problem statements in the forum.

Samir_Khalilullah
Messages
10
Reaction score
0
Homework Statement
Please see attachments.
Relevant Equations
## E = \frac {k q} {r^2} ##
## F= Eq ##
## \ddot x + \omega^2 x = 0 ##
here is my attempted solution.
soln.png

## d^2 = z^2 + \frac {L^2} {3} ##
## C ## is coulomb constant
since the point is symmetric, only the vertical component of the electric field remains. So,
$$ E = 3 E_y =3 \frac {C Q cos \theta} {d^2} $$
$$ E= 3 \frac {C Q z} {d^3} $$

thus part (a) is done ( i think).

for part (b),

the particle with mass ## m ## and charge ## -q ## is experiencing a force

$$ F = -Eq = \frac {-3 C Q q z} {d^3} $$
$$ m \ddot z + \frac {3 C Q q z} {d^3} = 0 $$
$$ \ddot z + \frac {3 C Q q z} {m d^3} = 0 $$
Comparing it with the SHM equation ,

$$ \omega^2 = \frac {k_{spring}} {m} = \frac {3 C Q q } {m d^3} $$

now we know,
$$ K_{energy} = \frac {1} {2} k_{spring} x^2$$
thus we get ,
$$ x = \sqrt{\frac {2K_{energy} d^3} {3 C Q q} } $$

Did i do it correctly??
If i did then im going to approach part (c)
 

Attachments

  • prob.png
    prob.png
    20.4 KB · Views: 82
  • ss.png
    ss.png
    7.6 KB · Views: 73
  • ss2.png
    ss2.png
    5 KB · Views: 75
Physics news on Phys.org
People will be more likely to make an effort to help you if you made an effort to put the statement of the problem where it belongs, in the template instead of in attachments.
 
kuruman said:
People will be more likely to make an effort to help you if you made an effort to put the statement of the problem where it belongs, in the template instead of in attachments.
sorry ... Should i post a new thread on this with the statement on the template?
 
Samir_Khalilullah said:
Homework Statement: Please see attachments.

For information, note that the question states that the reduced Planck constant (##\hbar##) is ##6.62 \times 10^{-34}## Js. That is wrong because ##\hbar = \frac h{2\pi}## and ##h=6.63 \times 10^{-34}## Js (not even ##6.62 \times 10^{-34}## Js). However the Planck constant is not required in the question!!!

It may also be worth noting that system described is unstable (c.f. a sharp pencil balanced on its tip). The negative charge will be attracted to one of the positive charges unless it is constrained to the symmetry-axis. (As explained by Earnshaw’s theorem if you want to look it up.)

Samir_Khalilullah said:
## C ## is coulomb constant
I'd stick to ##k##. It is distinguishable from ##K## and (if needed) from ##k_{spring}##.

Samir_Khalilullah said:
$$ E= 3 \frac {C Q z} {d^3} $$
thus part (a) is done ( i think).
Both ##z## and ##d## are variables. You've already said ##d^2 = z^2 + \frac {L^2} {3}##. Your equation for ##E## should be in terms of the single variable ##z##.

Samir_Khalilullah said:
for part (b),

the particle with mass ## m ## and charge ## -q ## is experiencing a force

$$ F = -Eq = \frac {-3 C Q q z} {d^3} $$
$$ m \ddot z + \frac {3 C Q q z} {d^3} = 0 $$
$$ \ddot z + \frac {3 C Q q z} {m d^3} = 0 $$
Comparing it with the SHM equation ,

$$ \omega^2 = \frac {k_{spring}} {m} = \frac {3 C Q q } {m d^3} $$
The equation for SHM needs to be in terms of a single variable, ##z##. An equation for ##\omega## should be in terms of constants, but ##d## is not a constant'

You need a differential equation with a single variable (##z##), not both ##z## and ##d##. The equation may be a little messy but when you consider small values of ##z##, you should be able to make an approximation to simplify the equation to the 'standard' SHM equation.

An alternative approach might be to consider energy conservation.

Samir_Khalilullah said:
$$ x = \sqrt{\frac {2K_{energy} d^3} {3 C Q q} } $$
You are asked for a value of ##z##, not '##x##'. And the question refers to this value as 'D'. So your final equation should start 'D =', not 'x ='.
 
  • Like
Likes   Reactions: Samir_Khalilullah

Similar threads

  • · Replies 28 ·
Replies
28
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
1
Views
1K
Replies
6
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
1K