Electric field of point along the central vertical axis of a triangle

Click For Summary
SUMMARY

The discussion focuses on calculating the electric field along the central vertical axis of a triangle formed by three point charges. The user derives the vertical component of the electric field, represented as $$ E = 3 \frac {C Q z} {d^3} $$, and formulates the motion of a particle with mass $$ m $$ and charge $$ -q $$ under this electric field. The resulting differential equation is compared to the simple harmonic motion (SHM) equation, leading to the expression for displacement $$ D = \sqrt{\frac {2K_{energy} d^3} {3 C Q q}} $$, where $$ K_{energy} $$ is the kinetic energy. The discussion also highlights the importance of using consistent variable notation and the implications of Earnshaw's theorem regarding system stability.

PREREQUISITES
  • Understanding of electric fields and Coulomb's law
  • Familiarity with simple harmonic motion (SHM) equations
  • Knowledge of differential equations
  • Basic concepts of energy conservation in physics
NEXT STEPS
  • Study the derivation of electric fields from point charges using Coulomb's law
  • Learn about the application of Earnshaw's theorem in electrostatics
  • Explore methods for solving differential equations related to SHM
  • Investigate energy conservation principles in oscillatory systems
USEFUL FOR

Students of physics, particularly those studying electromagnetism and mechanics, as well as educators looking for examples of electric field calculations and SHM applications.

Samir_Khalilullah
Messages
10
Reaction score
0
Homework Statement
Please see attachments.
Relevant Equations
## E = \frac {k q} {r^2} ##
## F= Eq ##
## \ddot x + \omega^2 x = 0 ##
here is my attempted solution.
soln.png

## d^2 = z^2 + \frac {L^2} {3} ##
## C ## is coulomb constant
since the point is symmetric, only the vertical component of the electric field remains. So,
$$ E = 3 E_y =3 \frac {C Q cos \theta} {d^2} $$
$$ E= 3 \frac {C Q z} {d^3} $$

thus part (a) is done ( i think).

for part (b),

the particle with mass ## m ## and charge ## -q ## is experiencing a force

$$ F = -Eq = \frac {-3 C Q q z} {d^3} $$
$$ m \ddot z + \frac {3 C Q q z} {d^3} = 0 $$
$$ \ddot z + \frac {3 C Q q z} {m d^3} = 0 $$
Comparing it with the SHM equation ,

$$ \omega^2 = \frac {k_{spring}} {m} = \frac {3 C Q q } {m d^3} $$

now we know,
$$ K_{energy} = \frac {1} {2} k_{spring} x^2$$
thus we get ,
$$ x = \sqrt{\frac {2K_{energy} d^3} {3 C Q q} } $$

Did i do it correctly??
If i did then im going to approach part (c)
 

Attachments

  • prob.png
    prob.png
    20.4 KB · Views: 79
  • ss.png
    ss.png
    7.6 KB · Views: 71
  • ss2.png
    ss2.png
    5 KB · Views: 73
Physics news on Phys.org
People will be more likely to make an effort to help you if you made an effort to put the statement of the problem where it belongs, in the template instead of in attachments.
 
kuruman said:
People will be more likely to make an effort to help you if you made an effort to put the statement of the problem where it belongs, in the template instead of in attachments.
sorry ... Should i post a new thread on this with the statement on the template?
 
Samir_Khalilullah said:
Homework Statement: Please see attachments.

For information, note that the question states that the reduced Planck constant (##\hbar##) is ##6.62 \times 10^{-34}## Js. That is wrong because ##\hbar = \frac h{2\pi}## and ##h=6.63 \times 10^{-34}## Js (not even ##6.62 \times 10^{-34}## Js). However the Planck constant is not required in the question!!!

It may also be worth noting that system described is unstable (c.f. a sharp pencil balanced on its tip). The negative charge will be attracted to one of the positive charges unless it is constrained to the symmetry-axis. (As explained by Earnshaw’s theorem if you want to look it up.)

Samir_Khalilullah said:
## C ## is coulomb constant
I'd stick to ##k##. It is distinguishable from ##K## and (if needed) from ##k_{spring}##.

Samir_Khalilullah said:
$$ E= 3 \frac {C Q z} {d^3} $$
thus part (a) is done ( i think).
Both ##z## and ##d## are variables. You've already said ##d^2 = z^2 + \frac {L^2} {3}##. Your equation for ##E## should be in terms of the single variable ##z##.

Samir_Khalilullah said:
for part (b),

the particle with mass ## m ## and charge ## -q ## is experiencing a force

$$ F = -Eq = \frac {-3 C Q q z} {d^3} $$
$$ m \ddot z + \frac {3 C Q q z} {d^3} = 0 $$
$$ \ddot z + \frac {3 C Q q z} {m d^3} = 0 $$
Comparing it with the SHM equation ,

$$ \omega^2 = \frac {k_{spring}} {m} = \frac {3 C Q q } {m d^3} $$
The equation for SHM needs to be in terms of a single variable, ##z##. An equation for ##\omega## should be in terms of constants, but ##d## is not a constant'

You need a differential equation with a single variable (##z##), not both ##z## and ##d##. The equation may be a little messy but when you consider small values of ##z##, you should be able to make an approximation to simplify the equation to the 'standard' SHM equation.

An alternative approach might be to consider energy conservation.

Samir_Khalilullah said:
$$ x = \sqrt{\frac {2K_{energy} d^3} {3 C Q q} } $$
You are asked for a value of ##z##, not '##x##'. And the question refers to this value as 'D'. So your final equation should start 'D =', not 'x ='.
 
  • Like
Likes   Reactions: Samir_Khalilullah

Similar threads

  • · Replies 28 ·
Replies
28
Views
1K
  • · Replies 6 ·
Replies
6
Views
982
  • · Replies 6 ·
Replies
6
Views
1K
Replies
1
Views
1K
Replies
6
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
1K