Electric potential inside a hollow sphere with non-uniform charge

RodolfoM
Messages
8
Reaction score
2
Homework Statement
The electric potential on the surface of a hollow spherical shell of radius 𝑅 is 𝑉0 𝑐𝑜𝑠𝜃, where 𝑉0 is a constant. In this problem we use spherical coordinates with origin at the center of the shell. What is the potential inside the shell?

Answer: 𝑉(𝑟,𝜃) = 𝑟/𝑅 𝑉0 𝑐𝑜𝑠𝜃
Relevant Equations
Gauss's Law, Point charge potential.
I tried to find the charge distribution using the given potential but couldn't produce the correct result. Also, Gauss's Law doesn't help, as the electric flux is 0 but we don't have any symmetry. Can someone please shine a light on this? Thanks in advance..
 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top