Electromagnetic linear momentum for a system of two moving charges

angrystudent
Messages
6
Reaction score
1
Homework Statement
I want to obtain the "total" EM linear momentum for a system of two moving charges
Relevant Equations
Lienard-Wiechert potentials, Lorentz force law
When you write out the equations of motion for a system of two isolated charges, you can add both of the equations and get the increase in the particles linear momentum on one side. On the other side, you get the sum of all the forces between the particles. I understand that this sum of forces could be written as the negative time derivative of the system's total electromagnetic momentum. But since the forces are quite complicated, I just can't seem to deduce the expression of this EM momentum

I guess that you could write the ##\mathbf{E}## and ##\mathbf{B}## fields due to both charges and integrate the momentum density ##\mathbf{D}\times\mathbf{B}## over all space to get the desired momentum, but I'm not too skilled with the integration of retarded functions. I have also tried to write the forces without deriving the potentials explicitly,
since
$$\mathbf{F}_{12} = -q_2\nabla_2V_{12} -q_2\partial_t(V_{12} \mathbf{v}_1/c^2) + q_2\mathbf{v}_2 \times \nabla_2 \times(V_{12} \mathbf{v}_1/c^2)$$
and
$$\mathbf{F}_{21} = -q_1\nabla_1V_{21} -q_1\partial_t(V_{21} \mathbf{v}_2/c^2) + q_1\mathbf{v}_1 \times \nabla_1\times(V_{21} \mathbf{v}_2/c^2)$$
but that doesn't seem to give an inspiring result

tl;dr I'm trying to write the sum of ##\mathbf{F}_{12}+\mathbf{F}_{21}## as a total time derivative. ##V_{12}## and ##V_{21}## refer to the Lienard-Wiechert potential
 
Last edited:
Physics news on Phys.org
I just realized that electromagnetic radiation contradicts my statement. As soon as the charges get accelerated, then the sum of linear momentum plus electromagnetic momentum is not conserved anymore because the momentum flux is non-zero at infinity. My initial approach doesn't make sense due to radiation phenomena This means that the Griffiths book chapter on conservation laws gets contradicted by the chapter on radiation.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top