Electromagnetic linear momentum for a system of two moving charges

Click For Summary

Homework Help Overview

The discussion revolves around the electromagnetic linear momentum of a system comprising two moving charges. The original poster attempts to derive an expression for the electromagnetic momentum by analyzing the forces acting between the charges and considering the implications of electromagnetic fields.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • The original poster explores the relationship between the forces acting on the charges and the total electromagnetic momentum, questioning how to express the sum of forces as a total time derivative. They also consider integrating momentum density over space but express uncertainty regarding their skills with retarded functions.

Discussion Status

Participants are engaged in exploring the complexities of electromagnetic momentum and the implications of radiation on momentum conservation. The original poster has recognized a potential contradiction in their reasoning due to the effects of electromagnetic radiation, indicating a shift in their understanding of the problem.

Contextual Notes

The discussion includes references to specific potentials (Lienard-Wiechert potentials) and the challenges of integrating complex functions, highlighting the constraints faced by the original poster in their analysis.

angrystudent
Messages
6
Reaction score
1
Homework Statement
I want to obtain the "total" EM linear momentum for a system of two moving charges
Relevant Equations
Lienard-Wiechert potentials, Lorentz force law
When you write out the equations of motion for a system of two isolated charges, you can add both of the equations and get the increase in the particles linear momentum on one side. On the other side, you get the sum of all the forces between the particles. I understand that this sum of forces could be written as the negative time derivative of the system's total electromagnetic momentum. But since the forces are quite complicated, I just can't seem to deduce the expression of this EM momentum

I guess that you could write the ##\mathbf{E}## and ##\mathbf{B}## fields due to both charges and integrate the momentum density ##\mathbf{D}\times\mathbf{B}## over all space to get the desired momentum, but I'm not too skilled with the integration of retarded functions. I have also tried to write the forces without deriving the potentials explicitly,
since
$$\mathbf{F}_{12} = -q_2\nabla_2V_{12} -q_2\partial_t(V_{12} \mathbf{v}_1/c^2) + q_2\mathbf{v}_2 \times \nabla_2 \times(V_{12} \mathbf{v}_1/c^2)$$
and
$$\mathbf{F}_{21} = -q_1\nabla_1V_{21} -q_1\partial_t(V_{21} \mathbf{v}_2/c^2) + q_1\mathbf{v}_1 \times \nabla_1\times(V_{21} \mathbf{v}_2/c^2)$$
but that doesn't seem to give an inspiring result

tl;dr I'm trying to write the sum of ##\mathbf{F}_{12}+\mathbf{F}_{21}## as a total time derivative. ##V_{12}## and ##V_{21}## refer to the Lienard-Wiechert potential
 
Last edited:
Physics news on Phys.org
I just realized that electromagnetic radiation contradicts my statement. As soon as the charges get accelerated, then the sum of linear momentum plus electromagnetic momentum is not conserved anymore because the momentum flux is non-zero at infinity. My initial approach doesn't make sense due to radiation phenomena This means that the Griffiths book chapter on conservation laws gets contradicted by the chapter on radiation.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
627
  • · Replies 9 ·
Replies
9
Views
3K
Replies
4
Views
2K