Electron Trajectory: Stuck on a difficult problem....

AI Thread Summary
The discussion centers on understanding the trajectory of an electron between two charged plates. The key points include the uniform downward electric force acting on the electron, which is significant and should be verified for accuracy. The mass of the electron and its initial horizontal speed are provided, but there are corrections needed for the values mentioned. The gravitational force is negligible, allowing the focus to remain on the electric force affecting the electron's motion. The trajectory resembles a projectile motion problem, where the electron moves horizontally while experiencing a constant downward force.
MiguelBBeats
Messages
1
Reaction score
0
Homework Statement
In the oscilloscope shown in Figure 6, an electron
beam is deflected by an electric force produced by
charged metal plates AD and BC. In the region ABCD,

each electron experiences a uniform downward elec-
tric force of 3.20 1015 N. Each electron enters the

electric field along the illustrated axis, halfway
between A and B, with a velocity of 2.25 107 m/s parallel to the plates. The electric force is zero outside
ABCD. The mass of an electron is 9.11 1031 kg.
The gravitational force can be neglected during the

short time interval an electron travels to the fluores-
cent screen, S. Determine how far an electron is below

the axis of entry when it hits the screen.
Relevant Equations
Fbd diagram, fnet = ma, fg = mg
1633554653684.png

I am very confused on how to go about with this question. The only thing I've tried so far is drawing the fbd of the electron and because of the plates the force applied would cancel which makes it centered between the two plates. As of now that is the only thing I understand, I am not sure how it moves through the screen or how its suppose to be under the axis (axis on the diagram).
 
Physics news on Phys.org
You're given the force on the electron in the problem statement. And the mass of the electron. And the initial horizontal speed of the electron.

Can you draw a diagram of the (approximate) trajectory of the electron?
 
:welcome:
 
Hi @MiguelBBeats. Welcome from me too! Here are a few things to think about...

MiguelBBeats said:
each electron experiences a uniform downward electric force of 3.20 1015 N
That's a very big force! (And could be written using the superscript button at the top of the text area as 3.20x1015N.) Maybe you should check your value is correct!

MiguelBBeats said:
The mass of an electron is 9.11 1031 kg.
Oh no it isn't!

MiguelBBeats said:
Relevant Equations:: Fbd diagram, fnet = ma, fg = mg
You are told the gravitational force is negligible. So you can pretend it is zero. That means "fg = mg" is not a relevant equation!

MiguelBBeats said:
and because of the plates the force applied would cancel which makes it centered between the two plates.
How can the force applied cancel, if it is the only force?

Each electron enters the space between the plates midway between A and B (on the dotted line). But that does not mean the electrons stay on the dottted line!

One plate is positive and the other is negative (can you work out which is which?) and that is the reason there is a constant force on each electron while it is between the plates. (Editted.)

Are you familiar with projectile problems, where the projectile's velocity is initially horizontal? Assuming the answer is 'yes', do you see the relevance?
 
MiguelBBeats said:
each electron experiences a uniform downward elec-
tric force of 3.20 1015 N.

Each electron enters the electric field along the illustrated axis, halfway
between A and B, with a velocity of 2.25 107 m/s parallel to the plates.

The mass of an electron is 9.11 1031 kg.
Presumably those are supposed to be
##3.20\times 10^{-15} N##
##2.25 \times10^{7} m/s## or ##2.25\times 10^{-7} m/s## (which?)
##9.11\times 10^{-31} kg##
MiguelBBeats said:
not sure how it moves through the screen or how its suppose to be under the axis
You have an object moving horizontally, initially, and subject to a constant downward force. Remind you of anything?
In case there is any misunderstanding, axis referred to is the dashed blue line it starts on.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top