kmm
- 188
- 15
In Griffith's section about electrostatic boundary conditions, he says that given a surface with charge density \sigma, and take a wafer-thin Gaussian pillbox extending over the top and bottom of the surface, Gauss's law states that: \oint_{S} \mathbf{E} \cdot d \mathbf{a} = \frac{1}{\epsilon_{0}} Q_{enc} = \frac{1}{\epsilon_{0}} \sigma A Now, in the limit that the thickness of the pillbox goes to zero, we have: E_{above}^{\perp} - E_{below}^{\perp} = \frac{1}{\epsilon_{0}} \sigma The image he gives is attached in this post. He says for consistency to let upward be the positive direction for both, but I don't understand why he has E pointing up above and also up below the surface. I would think E is pointing up above the surface and down below the surface so that when we take \oint_{S} \mathbf{E} \cdot d \mathbf{a} we would actually get E_{above}^{\perp} + E_{below}^{\perp} = \frac{1}{\epsilon_{0}} \sigma getting a plus instead of minus since \mathbf{E}_{below} and d \mathbf{a} both point down canceling the negatives. What am I thinking wrong?
Attachments
Last edited: