Electrostatic force on a test charge by uniformly charged annular disc

AI Thread Summary
The discussion focuses on calculating the electrostatic force exerted on a test charge by a uniformly charged annular disc. Participants clarify the definitions of total charge (Q) and the infinitesimal charge elements (dQ) on the disc, emphasizing the need for proper integration techniques. The challenge arises in determining the correct variable for integration in the force equation, with suggestions to express the area element (dA) in spatial coordinates for integration purposes. There is a critique of the initial expression for Q, indicating it lacks clarity and correctness. Overall, the conversation aims to refine the mathematical approach to solving the electrostatic force problem.
YK0001
Messages
3
Reaction score
1
Homework Statement
A uniformly charged disk with the total charge ##Q##, has an exterior radius of ##b_{1}## and the disc is an annular disc with the interior radius of ##b_{0}##.
A test charge ##q_{t}## has been placed ##\overrightarrow{A}\text{meters}## away from the center of the disk ##\overrightarrow{O}##.
$$\overrightarrow{O} =\begin{bmatrix}0\\0\end{bmatrix}\text{ and }\overrightarrow{A} =\begin{bmatrix}x\\y\end{bmatrix}$$
Calculate the electrostatic force (scalar magnitude with direction or a vector quantity) on ##q_{t}## caused by the disk.
Relevant Equations
Coulomb's law: ##\overrightarrow{F}_{12} = \frac{kq_{1}q_{2}}{\overrightarrow{r_{12}}^{2}}##
Volume by revolving area bound by a function: ##A(x) = \pi(F(x)^2)\text{ and }V = \int_{a}^{b}A(x)dx\text{ or } Y = \int_{c}^{d}A(y)dy##
Since we know that ##Q = \text{Total charge uniformly distributed in the disc}## and the area of the disc is just ##\pi((b_1-b_0)^2)##.
We can define ##dQ_{\tiny{|}}## as the charge of an infinitesimally small point on the disk, and ##Q_{\tiny{|}}## as the chage of an infinitesimally small cross sectional line from the disc, such that ##Q = \pi(\int dQ_{\tiny{|}})^2##. We can then calculate the electrostatic force on ##q_t## from ##dQ_{\tiny{|}}## to be ##dF_{\tiny{|}} = \frac{kQ_{\tiny{|}}q_t}{(r)^2} = \frac{kQ_{\tiny{|}}q_t}{x^2+b^2-2xbcos(\theta)}##, then we can conclude that: $$F_{\tiny{|}} = \int\frac{kdQ_{\tiny{|}}q_{t}}{x^2+b^2-2xbcos(\theta)} = kq_{t}\int\frac{dQ_{\tiny{|}}}{x^2+b^2-2xbcos(\theta)}$$.
This is where the problem arises, I don't know what to integrate the right side to respect with, I've hypothesized that it's with respect to ##Q_{\tiny{|}}## so it looks like ##\int [...] dQ_{\tiny{|}}## because that is the infinitesimally small term already present on that side of the equation, but I am unsure if this is the correct assumption to make, I'm also thinking that there are 3 changing variables in that integral (x, b, theta (theta not really, since we can get that in terms of x and b), but I'm not sure what that integral needs to be).

I have drawn a diagram showing the disc and have attached that as well, the blue shaded areas are charged.
1736648247429.jpeg
 
Physics news on Phys.org
YK0001 said:
Since we know that ##Q = \text{Total charge uniformly distributed in the disc}## and the area of the disc is just ##\pi((b_1-b_0)^2)## . . .
. . . we can define a surface charge ##~\sigma =\dfrac{Q}{\pi((b_1-b_0)^2)}.## Then a small area element ##dA## has charge ##dq=\sigma ~dA=\dfrac{Q}{\pi((b_1-b_0)^2)}dA.## Can you express area element ##dA## in terms of spatial coordinates over which you can integrate?

As a matter of clarity, here ##Q## is the given total charge on the disk and a has a constant value. If you wish to subdivide it into small elements, you should given then a different symbol as I have done. Note that ##Q=\int_0^Qdq.## Your expression ##Q = \pi(\int dQ_{\tiny{|}})^2## makes no sense at all.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top