Electrostatics: sign of the potential

Click For Summary
SUMMARY

The discussion centers on the sign convention in electrostatics, specifically regarding the electric potential derived from a radially oriented electric field, ##\textbf{E}##. The integral for potential, ##V(\textbf{r})=-\int_\infty^r \textbf{E}\cdot d\textbf{l}##, incorporates a negative sign to account for the antiparallel nature of the electric field and displacement vector. The Coulomb field is analyzed, revealing that the potential ##\Phi(r)## is defined as ##\Phi(r)=\frac{q}{4 \pi r}##, with the choice of zero potential at infinity being standard practice. The discussion concludes that integrating from infinity to a point results in a negative integral, aligning with the expected positive potential difference.

PREREQUISITES
  • Understanding of electric fields and potentials in electrostatics.
  • Familiarity with line integrals and vector calculus.
  • Knowledge of Coulomb's law and its implications for electric forces.
  • Basic concepts of conservative fields and energy conservation in physics.
NEXT STEPS
  • Study the derivation of electric potential from electric fields using line integrals.
  • Explore the properties of conservative vector fields and their implications in physics.
  • Learn about the significance of boundary conditions in electrostatics, particularly at infinity.
  • Investigate the relationship between electric potential energy and work done in electrostatic systems.
USEFUL FOR

Students and professionals in physics, particularly those specializing in electromagnetism, electrical engineers, and anyone interested in the mathematical foundations of electrostatics.

torito_verdejo
Messages
20
Reaction score
4
The final result will only differ in its sign, but this is crucial. Having a positively, radially oriented electric field ##\textbf{E}##, I understand that the sign of the integral should be positive (## - (- A) = A##), but it is not! How and why is this the case? A line integral where the vector field is antiparallel to the displacement vector should be negative; is this negativity already taken into account by the conventional minus sign in ##V(\textbf{r})=-\int_\Lambda \textbf{E}\cdot d\textbf{l}##?

Thank you very much.
 
Physics news on Phys.org
It's a convention that conservative fields' potentials are defined with the - sign. It comes from classical mechanics, where you like to have the total (conserved) energy being the sum of the kinetic and potential energy.

As for your example. I guess you think about the Coulomb field. You know that
$$\vec{E}(\vec{x})=\frac{q}{4 \pi r^3} \vec{x} \quad \text{with} \quad r=|\vec{x}|.$$
To get the potential, simply use the definition and think a bit about symmetries. Since the charge ##q## is sitting at the origin everything is symmetric under rotations around the origin. Thus it makes sense to try the ansatz that the potential depends only on ##r=|\vec{x}|##. Then you have
$$\vec{E}=-\vec{\nabla} \Phi(r)=-\frac{\vec{x}}{r} \Phi'(r).$$
Comparing the Coulomb law you see that
$$\Phi'(r)=-\frac{q}{4 \pi r^2} \; \Rightarrow \; \Phi(r)=\frac{q}{4 \pi r}.$$
I've chosen the arbitrary additive constant such that ##\Phi(r) \rightarrow 0## for ##r \rightarrow \infty## which is usually the most convenient choice.

Physicswise the sign is also clear. For a test charge ##q'## the potential energy is ##U=q' \Phi(r)##, which is the work to be done to bring the test charge at the position ##\vec{x}## from infinity. If ##q'>0## and ##q>0## the Coulomb force is repulsive and you need to do work against this repulsive force to bring the test charge from infinity to a place with distance ##r## from the charge ##q##, i.e., you put energy into the system, and that's why this energy must be positive, which is indeed the case ##U=q q'/(4 \pi r)##. If ##q q'<0## the Coulomb force is attractive and you have to take energy out of the system, which is why in this case ##U## is negative.
 
  • Like
Likes   Reactions: torito_verdejo
torito_verdejo said:
Summary:: Given the potential ##V(\textbf{r})=-\int_\infty^r \textbf{E}\cdot d\textbf{l}##, and given that ##\textbf{E}## is antiparallel to ##d\textbf{l}##, should I evaluate the positive integral ##V(\textbf{r})=\int_\infty^r E\ dr##?

The final result will only differ in its sign, but this is crucial. Having a positively, radially oriented electric field ##\textbf{E}##, I understand that the sign of the integral should be positive (## - (- A) = A##), but it is not! How and why is this the case? A line integral where the vector field is antiparallel to the displacement vector should be negative; is this negativity already taken into account by the conventional minus sign in ##V(\textbf{r})=-\int_\Lambda \textbf{E}\cdot d\textbf{l}##?

Thank you very much.

##d\vec l## is defined by the direction you are moving. Let's forget about coordinates for a moment:

If ##\vec E## is radially outward and ##d \vec l## is radially inward, then the inner product is negative. The integral itself must be negative (and the potential difference must be positive).

If we use ##r## as a coordinate and integrate from ##0## to ##\infty##, then we get a positive integral, which is not right. But, if we integrate from ##\infty## to ##0##, then by the properties of the integral this gives us a negative integral, as we expect.

In summary:

##\int_{\infty}^{P} \vec E \cdot \vec dl = \int_{\infty}^{r_0} E dr = - \int_{r_0}^{\infty} E dr##

Where ##P## is a point at radius ##r_0##.

In summary, havng the bounds on ##r## go from ##\infty## to ##0## already factors in the negative sign. Alternatively, you can have ##r## go in its "normal" direction, from ##0## to ##\infty##, then then you do need to have a negative factor because that is antiparallel to the direction of your line element.
 
  • Like
Likes   Reactions: torito_verdejo
vanhees71 said:
It's a convention that conservative fields' potentials are defined with the - sign. It comes from classical mechanics, where you like to have the total (conserved) energy being the sum of the kinetic and potential energy.

As for your example. I guess you think about the Coulomb field. You know that
$$\vec{E}(\vec{x})=\frac{q}{4 \pi r^3} \vec{x} \quad \text{with} \quad r=|\vec{x}|.$$
To get the potential, simply use the definition and think a bit about symmetries. Since the charge ##q## is sitting at the origin everything is symmetric under rotations around the origin. Thus it makes sense to try the ansatz that the potential depends only on ##r=|\vec{x}|##. Then you have
$$\vec{E}=-\vec{\nabla} \Phi(r)=-\frac{\vec{x}}{r} \Phi'(r).$$
Comparing the Coulomb law you see that
$$\Phi'(r)=-\frac{q}{4 \pi r^2} \; \Rightarrow \; \Phi(r)=\frac{q}{4 \pi r}.$$
I've chosen the arbitrary additive constant such that ##\Phi(r) \rightarrow 0## for ##r \rightarrow \infty## which is usually the most convenient choice.

Physicswise the sign is also clear. For a test charge ##q'## the potential energy is ##U=q' \Phi(r)##, which is the work to be done to bring the test charge at the position ##\vec{x}## from infinity. If ##q'>0## and ##q>0## the Coulomb force is repulsive and you need to do work against this repulsive force to bring the test charge from infinity to a place with distance ##r## from the charge ##q##, i.e., you put energy into the system, and that's why this energy must be positive, which is indeed the case ##U=q q'/(4 \pi r)##. If ##q q'<0## the Coulomb force is attractive and you have to take energy out of the system, which is why in this case ##U## is negative.
Thank you for the detailed explanation. :)
 
PeroK said:
##d\vec l## is defined by the direction you are moving. Let's forget about coordinates for a moment:

If ##\vec E## is radially outward and ##d \vec l## is radially inward, then the inner product is negative. The integral itself must be negative (and the potential difference must be positive).

If we use ##r## as a coordinate and integrate from ##0## to ##\infty##, then we get a positive integral, which is not right. But, if we integrate from ##\infty## to ##0##, then by the properties of the integral this gives us a negative integral, as we expect.

In summary:

##\int_{\infty}^{P} \vec E \cdot \vec dl = \int_{\infty}^{r_0} E dr = - \int_{r_0}^{\infty} E dr##

Where ##P## is a point at radius ##r_0##.

In summary, havng the bounds on ##r## go from ##\infty## to ##0## already factors in the negative sign. Alternatively, you can have ##r## go in its "normal" direction, from ##0## to ##\infty##, then then you do need to have a negative factor because that is antiparallel to the direction of your line element.
Thank you, this solved my doubt.
 
  • Like
Likes   Reactions: PeroK

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 11 ·
Replies
11
Views
4K