B Elegant way to prove ##AB^{n}## commute

  • B
  • Thread starter Thread starter askmathquestions
  • Start date Start date
  • Tags Tags
    Commute
askmathquestions
Messages
65
Reaction score
6
If ##A## and ##B## are two matrices which commute, then probably ##AB^{n} = B^{n}A## too.

Now, I could probably do all the work of proving this with induction, but I feel like there should be a more elegant way to prove this, though I don't know exactly how to avoid writing ellipses. If I start with ##AB^{n} = A \prod_{k=1}^{n}B = AB...B = BAB... = BBAB...B -> = BB...BA ...## and we get this sort of iterative commutation argument, though I'm not sure how to formalize it.
 
Physics news on Phys.org
Induction is elegant, especially in cases like this!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top