brotherbobby
- 749
- 169
- Homework Statement
- Given ##\boxed{\quad\text{cosec}\,\theta-\sin\theta=m\quad,\quad \sec\theta-\cos\theta=n.\qquad\mathbf{\text{Eliminate}\;\boldsymbol\theta}\quad}##
- Relevant Equations
- 1. ##\sin^2\theta+\cos^2\theta=1##,
2. If ##ax^2+bx+c=0,\quad x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}##
Multiplying the first equation by ##\sin\theta## throughout and the second by ##\cos\theta## throughout, we get ##1-\sin^2\theta=m\sin\theta\quad,\quad 1-\cos^2\theta=n\cos\theta##.
Solving the two equations, ##\quad\sin\theta=\dfrac{-m+\sqrt{m^2+4}}{2}\quad,\quad \cos\theta=\dfrac{-n+\sqrt{n^2+4}}{2}.##
Squaring them, we get ##\quad\sin^2\theta=\dfrac{m^2-m\sqrt{m^2+4}+2}{2}\quad,\quad \cos^2\theta=\dfrac{n^2-n\sqrt{n^2+4}+2}{2}.##
Adding them to 1 and simplyfying, ##\boxed{m^2+n^2-m\sqrt{m^2+4}-n\sqrt{n^2+4}+2=0\;}## , which is my eliminant.
Text answer : ##\boxed{\quad\boldsymbol{m^{2/3}\,n^{2/3}(m^{2/3}+n^{2/3})=1}\quad}##
I cannot reduce my answer to that of the text via algebra.
Request : Where did I go wrong?
Solving the two equations, ##\quad\sin\theta=\dfrac{-m+\sqrt{m^2+4}}{2}\quad,\quad \cos\theta=\dfrac{-n+\sqrt{n^2+4}}{2}.##
Squaring them, we get ##\quad\sin^2\theta=\dfrac{m^2-m\sqrt{m^2+4}+2}{2}\quad,\quad \cos^2\theta=\dfrac{n^2-n\sqrt{n^2+4}+2}{2}.##
Adding them to 1 and simplyfying, ##\boxed{m^2+n^2-m\sqrt{m^2+4}-n\sqrt{n^2+4}+2=0\;}## , which is my eliminant.
Text answer : ##\boxed{\quad\boldsymbol{m^{2/3}\,n^{2/3}(m^{2/3}+n^{2/3})=1}\quad}##
I cannot reduce my answer to that of the text via algebra.
Request : Where did I go wrong?
Last edited: