Energy and basic math (proportionality)

Click For Summary

Homework Help Overview

The problem involves a scenario where a runner must pick up a mass equal to her own while maintaining the same amount of work, prompting a discussion about how this affects her speed. The context is rooted in the principles of energy and motion, specifically kinetic energy.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the relationship between mass and speed, particularly how doubling the mass affects the speed based on the kinetic energy equation. Questions arise about the implications of halving the speed squared and how that translates to the actual speed change.

Discussion Status

Participants are exploring different interpretations of the kinetic energy relationship and how to derive the new speed factor. Some have offered guidance on checking mathematical steps, while others are questioning their own calculations and assumptions.

Contextual Notes

There is a focus on the assumptions regarding the work done and the relationship between initial and final kinetic energies. Participants are also navigating through potential miscalculations and clarifying the mathematical relationships involved.

Natko
Messages
44
Reaction score
0

Homework Statement



A person running in a race has to pick up a mass equal to her own mass. Assuming she can still do the same
amount of work, her speed will be changed by a factor of
a. 0.25
b. 0.50
c. 0.71
d. 1
e. 2

Homework Equations



E=1/2mv2

The Attempt at a Solution



Since m is doubled, v2 should be halved. I'm stuck now. But the correct answer is 0.71. Can someone explain how?
 
Physics news on Phys.org
Natko said:

Homework Statement



A person running in a race has to pick up a mass equal to her own mass. Assuming she can still do the same
amount of work, her speed will be changed by a factor of
a. 0.25
b. 0.50
c. 0.71
d. 1
e. 2

Homework Equations



E=1/2mv2

The Attempt at a Solution



Since m is doubled, v2 should be halved. I'm stuck now. But the correct answer is 0.71. Can someone explain how?
You're correct that ##v^2## should be halved (multiplied by a factor of 1/2). So what does that say about the factor by which ##v## should be decreased?
 
goraemon said:
You're correct that ##v^2## should be halved (multiplied by a factor of 1/2). So what does that say about the factor by which ##v## should be decreased?

Well, 1/2 squared is 0.25, and 12 halved is 0.5. How do I get to 0.71?
 
Natko said:
Well, 1/2 squared is 0.25, and 12 halved is 0.5. How do I get to 0.71?

You know that her initial kinetic energy is ##\frac{1}{2}mv_{0}^2##, the final kinetic energy is ##\frac{1}{2}(2m)v_{1}^2##.

You need to find what the relationship between v1 and v0 is. Ask yourself, how can you do so given the above equations?
 
goraemon said:
You know that her initial kinetic energy is ##\frac{1}{2}mv_{0}^2##, the final kinetic energy is ##\frac{1}{2}(2m)v_{1}^2##.

You need to find what the relationship between v1 and v0 is. Ask yourself, how can you do so given the above equations?

v12 = ((1/2)v0)2

If I let v0 = 1, then v1 = sqrt(1/2), which equals 0.71 :)
 
Last edited:
Natko said:
v12 = (1/2)v02

If I let v0 = 1, then v1 = 1/2, which doesn't work out.

That's not true. Check your math. As you state above, you've simplified the equation to the following:

##v_{1}^2=\frac{1}{2}v_{0}^2##

So just take the square root of both sides. What does that get you?
 
goraemon said:
That's not true. Check your math. As you state above, you've simplified the equation to the following:

##v_{1}^2=\frac{1}{2}v_{0}^2##

So just take the square root of both sides. What does that get you?

Changed my previous post. Thanks!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
953
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
4
Views
2K