Energy Changes in Capacitor After Disconnecting from Battery

Click For Summary
The discussion centers on the energy changes in a capacitor after it is disconnected from a battery and the dielectric is removed. Initially, the energy is calculated using the formula U = Q²/(2C), with changes in charge and capacitance after inserting the dielectric. Upon disconnection, while the charge remains constant, the capacitance and voltage change, leading to a new energy relationship where U₂ = (5/2)U₁. Participants confirm calculations and reasoning, ultimately agreeing that the energy ratio U₁/U₂ equals 1/5. The discussion highlights the importance of understanding how charge and capacitance affect energy in capacitors.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
A parallel-plate capacitor with a plate separation of ##d## is connected to a battery, having energy ##U_1##. A dielectric with a constant ##k=2## is inserted between the capacitor's plates, and the plate separation is reduced by 20%. The capacitor is then disconnected from the battery, and the dielectric is removed. The energy stored in the capacitor changes to ##U_2##. What is the ratio ##U_1/U_2##?
Relevant Equations
##q = CV##
My try:

At first, the energy is ##U_1 = \dfrac {q^2_1}{2C_1}##. After inserting the dielectric and reducing the distance between plates, the capacitance changes to ##\dfrac {5}{2}C_1##, and because the voltage is constant, we have ##q_2 = \dfrac {5}{2}q_1##. When we disconnect it from the battery and remove the dielectric, the charge remains unchanged but both capacitance and voltage start changing... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##, so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.

But the options are:
  1. 25/4
  2. 25/16
  3. 4/25
  4. 16/25
 
Physics news on Phys.org
MatinSAR said:
... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##
Agreed.

MatinSAR said:
so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.
Check - remember ##U = \frac 12 \frac {Q^2}C##.

But, having said that, I don't get any of the answers in the list.
 
Steve4Physics said:
Check - remember ##U = \frac 12 \frac {Q^2}C##.
Yes I forget that ##U_1## has ##2## in denominator.
$$U_2 = \dfrac {(25/4)q^2_1}{(5/2)C_1}= (5/2)(q^2_1/C_1)$$$$U_1 = \dfrac {q^2_1}{2C_1}$$$$U_1/U_2 = 1/5$$
Do you agree with my reasoning?
 
MatinSAR said:
Yes I forget that ##U_1## has ##2## in denominator.
$$U_2 = \dfrac {(25/4)q^2_1}{(5/2)C_1}= (5/2)(q^2_1/C_1)$$$$U_1 = \dfrac {q^2_1}{2C_1}$$$$U_1/U_2 = 1/5$$
Do you agree with my reasoning?
Yes. FWIW I like to use proportionality for this type of problem. Down to personal preferences of course.

##U = \frac {Q^2}{2C}##. Since ##Q## changes by a factor ##\frac 52## and ##C## changes by a factor ##\frac 54##, ##U## changes by a factor ##\frac {{(\frac 52)^2}}{{\frac 54}} = 5##. I.e. ##U_2 = 5U_1##.
 
  • Like
Likes Steve4Physics
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K