Energy Changes in Capacitor After Disconnecting from Battery

AI Thread Summary
The discussion centers on the energy changes in a capacitor after it is disconnected from a battery and the dielectric is removed. Initially, the energy is calculated using the formula U = Q²/(2C), with changes in charge and capacitance after inserting the dielectric. Upon disconnection, while the charge remains constant, the capacitance and voltage change, leading to a new energy relationship where U₂ = (5/2)U₁. Participants confirm calculations and reasoning, ultimately agreeing that the energy ratio U₁/U₂ equals 1/5. The discussion highlights the importance of understanding how charge and capacitance affect energy in capacitors.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
A parallel-plate capacitor with a plate separation of ##d## is connected to a battery, having energy ##U_1##. A dielectric with a constant ##k=2## is inserted between the capacitor's plates, and the plate separation is reduced by 20%. The capacitor is then disconnected from the battery, and the dielectric is removed. The energy stored in the capacitor changes to ##U_2##. What is the ratio ##U_1/U_2##?
Relevant Equations
##q = CV##
My try:

At first, the energy is ##U_1 = \dfrac {q^2_1}{2C_1}##. After inserting the dielectric and reducing the distance between plates, the capacitance changes to ##\dfrac {5}{2}C_1##, and because the voltage is constant, we have ##q_2 = \dfrac {5}{2}q_1##. When we disconnect it from the battery and remove the dielectric, the charge remains unchanged but both capacitance and voltage start changing... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##, so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.

But the options are:
  1. 25/4
  2. 25/16
  3. 4/25
  4. 16/25
 
Physics news on Phys.org
MatinSAR said:
... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##
Agreed.

MatinSAR said:
so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.
Check - remember ##U = \frac 12 \frac {Q^2}C##.

But, having said that, I don't get any of the answers in the list.
 
Steve4Physics said:
Check - remember ##U = \frac 12 \frac {Q^2}C##.
Yes I forget that ##U_1## has ##2## in denominator.
$$U_2 = \dfrac {(25/4)q^2_1}{(5/2)C_1}= (5/2)(q^2_1/C_1)$$$$U_1 = \dfrac {q^2_1}{2C_1}$$$$U_1/U_2 = 1/5$$
Do you agree with my reasoning?
 
MatinSAR said:
Yes I forget that ##U_1## has ##2## in denominator.
$$U_2 = \dfrac {(25/4)q^2_1}{(5/2)C_1}= (5/2)(q^2_1/C_1)$$$$U_1 = \dfrac {q^2_1}{2C_1}$$$$U_1/U_2 = 1/5$$
Do you agree with my reasoning?
Yes. FWIW I like to use proportionality for this type of problem. Down to personal preferences of course.

##U = \frac {Q^2}{2C}##. Since ##Q## changes by a factor ##\frac 52## and ##C## changes by a factor ##\frac 54##, ##U## changes by a factor ##\frac {{(\frac 52)^2}}{{\frac 54}} = 5##. I.e. ##U_2 = 5U_1##.
 
  • Like
Likes Steve4Physics
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top