MatinSAR
- 673
- 204
- Homework Statement
- A parallel-plate capacitor with a plate separation of ##d## is connected to a battery, having energy ##U_1##. A dielectric with a constant ##k=2## is inserted between the capacitor's plates, and the plate separation is reduced by 20%. The capacitor is then disconnected from the battery, and the dielectric is removed. The energy stored in the capacitor changes to ##U_2##. What is the ratio ##U_1/U_2##?
- Relevant Equations
- ##q = CV##
My try:
At first, the energy is ##U_1 = \dfrac {q^2_1}{2C_1}##. After inserting the dielectric and reducing the distance between plates, the capacitance changes to ##\dfrac {5}{2}C_1##, and because the voltage is constant, we have ##q_2 = \dfrac {5}{2}q_1##. When we disconnect it from the battery and remove the dielectric, the charge remains unchanged but both capacitance and voltage start changing... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##, so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.
But the options are:
At first, the energy is ##U_1 = \dfrac {q^2_1}{2C_1}##. After inserting the dielectric and reducing the distance between plates, the capacitance changes to ##\dfrac {5}{2}C_1##, and because the voltage is constant, we have ##q_2 = \dfrac {5}{2}q_1##. When we disconnect it from the battery and remove the dielectric, the charge remains unchanged but both capacitance and voltage start changing... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##, so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.
But the options are:
- 25/4
- 25/16
- 4/25
- 16/25