Energy Changes in Capacitor After Disconnecting from Battery

Click For Summary
SUMMARY

The discussion focuses on the energy changes in a capacitor after it is disconnected from a battery. Initially, the energy is calculated using the formula ##U_1 = \dfrac {q^2_1}{2C_1}##. After inserting a dielectric, the capacitance increases to ##\dfrac {5}{2}C_1##, resulting in a charge of ##q_2 = \dfrac {5}{2}q_1##. Upon disconnection from the battery and removal of the dielectric, the energy ratio is determined to be ##U_1/U_2 = \dfrac {2}{5} = 0.4##, with further confirmation that ##U_2 = 5U_1## based on proportionality principles.

PREREQUISITES
  • Understanding of capacitor fundamentals
  • Familiarity with dielectric materials and their effects on capacitance
  • Knowledge of energy formulas for capacitors, specifically ##U = \frac{Q^2}{2C}##
  • Basic algebra for manipulating equations and ratios
NEXT STEPS
  • Study the effects of different dielectric materials on capacitance
  • Learn about energy storage in capacitors and related equations
  • Explore advanced capacitor configurations and their applications
  • Investigate the implications of charge conservation in electrical circuits
USEFUL FOR

Students and professionals in electrical engineering, physics enthusiasts, and anyone interested in understanding capacitor behavior in circuits.

MatinSAR
Messages
673
Reaction score
204
Homework Statement
A parallel-plate capacitor with a plate separation of ##d## is connected to a battery, having energy ##U_1##. A dielectric with a constant ##k=2## is inserted between the capacitor's plates, and the plate separation is reduced by 20%. The capacitor is then disconnected from the battery, and the dielectric is removed. The energy stored in the capacitor changes to ##U_2##. What is the ratio ##U_1/U_2##?
Relevant Equations
##q = CV##
My try:

At first, the energy is ##U_1 = \dfrac {q^2_1}{2C_1}##. After inserting the dielectric and reducing the distance between plates, the capacitance changes to ##\dfrac {5}{2}C_1##, and because the voltage is constant, we have ##q_2 = \dfrac {5}{2}q_1##. When we disconnect it from the battery and remove the dielectric, the charge remains unchanged but both capacitance and voltage start changing... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##, so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.

But the options are:
  1. 25/4
  2. 25/16
  3. 4/25
  4. 16/25
 
Physics news on Phys.org
MatinSAR said:
... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##
Agreed.

MatinSAR said:
so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.
Check - remember ##U = \frac 12 \frac {Q^2}C##.

But, having said that, I don't get any of the answers in the list.
 
  • Like
Likes   Reactions: MatinSAR
Steve4Physics said:
Check - remember ##U = \frac 12 \frac {Q^2}C##.
Yes I forget that ##U_1## has ##2## in denominator.
$$U_2 = \dfrac {(25/4)q^2_1}{(5/2)C_1}= (5/2)(q^2_1/C_1)$$$$U_1 = \dfrac {q^2_1}{2C_1}$$$$U_1/U_2 = 1/5$$
Do you agree with my reasoning?
 
MatinSAR said:
Yes I forget that ##U_1## has ##2## in denominator.
$$U_2 = \dfrac {(25/4)q^2_1}{(5/2)C_1}= (5/2)(q^2_1/C_1)$$$$U_1 = \dfrac {q^2_1}{2C_1}$$$$U_1/U_2 = 1/5$$
Do you agree with my reasoning?
Yes. FWIW I like to use proportionality for this type of problem. Down to personal preferences of course.

##U = \frac {Q^2}{2C}##. Since ##Q## changes by a factor ##\frac 52## and ##C## changes by a factor ##\frac 54##, ##U## changes by a factor ##\frac {{(\frac 52)^2}}{{\frac 54}} = 5##. I.e. ##U_2 = 5U_1##.
 
  • Like
Likes   Reactions: MatinSAR
  • Like
Likes   Reactions: Steve4Physics

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K