Undergrad Energy of moving Sine-Gordon breather

Click For Summary
The discussion centers on the energy of a moving breather in the Sine-Gordon equation, specifically the formula for energy derived from the equation. The energy for a moving breather is proposed to be E = E_0 / √(1 - v²), where E_0 is the energy at rest. The original poster struggles to derive this formula from the energy integral due to complex integrals. A response suggests that the Lorentz invariance of the equation allows for the transformation of the rest energy to moving solutions. The conversation highlights the challenge of deriving the energy expression for non-symmetric breather solutions.
TOAsh2004
Messages
10
Reaction score
5
TL;DR
I want to prove the formula ##E =\frac {E_0} {\sqrt {1 - v^2}} ## for the energy of the moving breather solution of the Sine-Gordon equation.
Hello everyone,

A few days ago I stumbled across the formula for the energy of a moving breather for the Sine-Gordon equation $$\Box^2 \phi = -Sin(\phi) $$ The energy in general is given by (c=1) $$ E = \int_{-\infty}^{\infty} \frac {1} {2} ((\frac {\partial \phi} {\partial x})^2+ (\frac {\partial \phi} {\partial t})^2) +1-Cos(\phi) \, dx ~~~~~~~~ (1) $$ and the moving breather solution in question is $$\phi(x,t) =4 arctan(\frac {\sqrt{1-w^2}} {w} \frac{Sin(w \frac{t-vx} {\sqrt{1-v^2}})} {Cosh(\sqrt{1-w^2} \frac {x-vt} {\sqrt{1-v^2}})}).$$ Here, v is the velocity of the breather, w is a parameter. Now it was claimed in different sources that the energy of this moving breather solution is $$E =\frac {E_0} {\sqrt {1 - v^2}}, ~~~~~~~~ (2) $$ where ##E_0## is the energy of the resting breather (v=0). I did try numerous attempts to derive this formula, by plugging in the breather solution into (1), but always ended up with integrals not even Mathematica was able to solve. I see, that (2) holds for travelling wave solutions ##\phi(x,t)=\phi(\frac {x-vt} {\sqrt{1-v^2}})##, but the breather solution does not have this symmetry. Can anyone provide me a hint on how one can derive (2)? I would very much appreciate it.

Greetings
 
Physics news on Phys.org
Sources?
"I stumbled across" is really not a reference.......
 
The equation is Lorentz invariant which means solutions for velocity, ##v##, may be written down given the ##v=0## solution. Doesn’t the energy expression just follow as the transform rest energy?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K