Energy of moving Sine-Gordon breather

Click For Summary
SUMMARY

The discussion centers on deriving the energy formula for a moving breather in the Sine-Gordon equation, specifically $$E = \frac {E_0} {\sqrt {1 - v^2}}$$, where ##E_0## represents the energy of the resting breather. The energy is calculated using the integral $$E = \int_{-\infty}^{\infty} \frac {1} {2} ((\frac {\partial \phi} {\partial x})^2+ (\frac {\partial \phi} {\partial t})^2) +1-Cos(\phi) \, dx$$. The challenge lies in integrating the moving breather solution $$\phi(x,t) = 4 \arctan(\frac {\sqrt{1-w^2}} {w} \frac{Sin(w \frac{t-vx} {\sqrt{1-v^2}})} {Cosh(\sqrt{1-w^2} \frac {x-vt} {\sqrt{1-v^2}})})$$, which does not exhibit the symmetry of traveling wave solutions. A participant suggests that the energy expression is a consequence of Lorentz invariance.

PREREQUISITES
  • Sine-Gordon equation
  • Integral calculus
  • Special relativity concepts, particularly Lorentz transformations
  • Mathematica for symbolic computation
NEXT STEPS
  • Study the derivation of energy expressions in Lorentz-invariant systems
  • Explore advanced techniques in integral calculus for solving complex integrals
  • Learn about breather solutions in nonlinear wave equations
  • Investigate the properties of the Sine-Gordon equation and its solutions
USEFUL FOR

Physicists, mathematicians, and researchers interested in nonlinear dynamics, wave equations, and the properties of solitons and breathers in field theories.

TOAsh2004
Messages
10
Reaction score
5
TL;DR
I want to prove the formula ##E =\frac {E_0} {\sqrt {1 - v^2}} ## for the energy of the moving breather solution of the Sine-Gordon equation.
Hello everyone,

A few days ago I stumbled across the formula for the energy of a moving breather for the Sine-Gordon equation $$\Box^2 \phi = -Sin(\phi) $$ The energy in general is given by (c=1) $$ E = \int_{-\infty}^{\infty} \frac {1} {2} ((\frac {\partial \phi} {\partial x})^2+ (\frac {\partial \phi} {\partial t})^2) +1-Cos(\phi) \, dx ~~~~~~~~ (1) $$ and the moving breather solution in question is $$\phi(x,t) =4 arctan(\frac {\sqrt{1-w^2}} {w} \frac{Sin(w \frac{t-vx} {\sqrt{1-v^2}})} {Cosh(\sqrt{1-w^2} \frac {x-vt} {\sqrt{1-v^2}})}).$$ Here, v is the velocity of the breather, w is a parameter. Now it was claimed in different sources that the energy of this moving breather solution is $$E =\frac {E_0} {\sqrt {1 - v^2}}, ~~~~~~~~ (2) $$ where ##E_0## is the energy of the resting breather (v=0). I did try numerous attempts to derive this formula, by plugging in the breather solution into (1), but always ended up with integrals not even Mathematica was able to solve. I see, that (2) holds for travelling wave solutions ##\phi(x,t)=\phi(\frac {x-vt} {\sqrt{1-v^2}})##, but the breather solution does not have this symmetry. Can anyone provide me a hint on how one can derive (2)? I would very much appreciate it.

Greetings
 
Physics news on Phys.org
Sources?
"I stumbled across" is really not a reference.......
 
The equation is Lorentz invariant which means solutions for velocity, ##v##, may be written down given the ##v=0## solution. Doesn’t the energy expression just follow as the transform rest energy?
 
  • Informative
Likes   Reactions: hutchphd

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K