MHB Equality of natural ln function

AI Thread Summary
The discussion centers on the inequality \( (\ln(n))^4 < n^{1/4} \) for \( n > 1 \), which is claimed to hold only for \( n = 1 \) and \( n = 2 \) when \( n \) is a natural number. Participants clarify that the statement is an inequality rather than an equality. The possibility of generalizing this inequality to \( (\ln(n))^b < n^{1/b} \) for \( n > 1 \) is questioned, suggesting that the original inequality may not be valid for all \( n \). The conversation emphasizes the need for careful consideration of the conditions under which such inequalities hold true. The discussion concludes with a focus on the limitations of the proposed generalization.
tmt1
Messages
230
Reaction score
0
I have this equality:

$$ (\ln\left({n}\right))^4 < {n}^{\frac{1}{4}} $$ where $ n > 1$

Can I derive a law from this such that

$$ (\ln\left({n}\right))^b < {n}^{\frac{1}{b}} $$ where $n > 1$ ?
 
Mathematics news on Phys.org
Hi tmt. $\ln^4(n)<n^{1/4}$ is only true for $n\in\{1,2\}$, if $n\in\mathbb{N}$.

By the way, it's an inequality.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top