Equation Demonstration -- Comparing a pendulum's motion to an LC circuit

Click For Summary
SUMMARY

This discussion focuses on demonstrating the equations governing simple harmonic motion in a physical pendulum and an LC circuit. The key formulas include the equation of motion for the pendulum, represented as ##\tau_z = I_z \ddot{\theta}_z##, and Kirchhoff's law for the LC circuit. Participants emphasize the importance of showing initial efforts in problem-solving before receiving assistance. Additionally, they suggest exploring the relationship between the coefficients in the differential equations of both systems to deepen understanding.

PREREQUISITES
  • Understanding of simple harmonic motion
  • Familiarity with the equation of motion for a physical pendulum
  • Knowledge of Kirchhoff's laws in electrical circuits
  • Basic differential equations
NEXT STEPS
  • Research the derivation of the equation of motion for a physical pendulum
  • Study Kirchhoff's voltage law and its application in LC circuits
  • Learn about energy conservation in mechanical systems and electrical circuits
  • Explore the relationship between natural frequency and system parameters in oscillatory systems
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and electrical circuits, as well as educators seeking to enhance their teaching of simple harmonic motion concepts.

Andrei0408
Messages
50
Reaction score
8
Homework Statement
I need the demonstration of the attached equations.
Relevant Equations
I've attached the 2 equations.
I've just learned about simple harmonic motion and I've been given the following examples: The physical pendulum (for small oscillations sin(theta)~theta), with the formula (1st pic), and the LC circuit, with the formula (2nd pic). If possible, I need the demonstration for these 2 formulas. Thank you!
 

Attachments

  • Screenshot (78).png
    Screenshot (78).png
    1.9 KB · Views: 169
  • Screenshot (79).png
    Screenshot (79).png
    1.9 KB · Views: 162
Physics news on Phys.org
For the first one, set ##\tau_z = I_z \ddot{\theta}_z##. For the second one, write out Kirchoff's law for the circuit. Unfortunately, the laws of Physics forums prevent me from helping any further until you've given it a shot!
 
Andrei0408 said:
Homework Statement:: I need the demonstration of the attached equations.
Relevant Equations:: I've attached the 2 equations.

I've just learned about simple harmonic motion and I've been given the following examples: The physical pendulum (for small oscillations sin(theta)~theta), with the formula (1st pic), and the LC circuit, with the formula (2nd pic). If possible, I need the demonstration for these 2 formulas. Thank you!
You know that you are required to show your efforts to work the problem before we can offer tutorial help. See what you can find as references for those two situations please.

Also, you never replied in your other thread about the car and the banked turn. What did you end up finding on that problem?

https://www.physicsforums.com/threa...ed-turn-in-a-road-for-a-maximum-speed.994630/
 
berkeman said:
You know that you are required to show your efforts to work the problem before we can offer tutorial help. See what you can find as references for those two situations please.

Also, you never replied in your other thread about the car and the banked turn. What did you end up finding on that problem?

https://www.physicsforums.com/threa...ed-turn-in-a-road-for-a-maximum-speed.994630/
Sorry I didn't reply faster, I had a lot of uni work. Yes I did manage to solve it, by adding half of the angle of the friction cone to the equation, then I used trigonometric functions to find out theta.
 
  • Like
Likes   Reactions: berkeman
(1) The general form for the natural frequency ##ω_0## (or at least the way I learned it) is: ##ω_0=\sqrt\frac{k}{m}##
(2) Look at the differential equations for Newton's second law and Kirchoff's second rule for circuits. If you can find the differences in the coefficients for each of these equations, it might help in understanding how the two formulas you provided are related to each other. Good luck!
 
Sometimes you can derive these things nicely by considering energy, for instance for the pendulum$$\begin{align*}E &= \frac{1}{2}mr^2 \dot{\theta}^2 - mgr\cos{\theta} \\ \frac{dE}{dt} &= mr^2 \ddot{\theta}\dot{\theta} + mgr \dot{\theta} \sin{\theta} \approx mr^2 \dot{\theta} \ddot{\theta} + mgr \theta \dot{\theta} \\ \\ \frac{dE}{dt} &= 0 \implies \ddot{\theta} \approx -\frac{g}{r}\theta \end{align*}$$Can you use the same approach, with ##E = \frac{1}{2}CV^2 + \frac{1}{2}Li^2##, to derive the EoM for the LC circuit?
 
etotheipi said:
##\dots~##to derive the EoM for the LC circuit?
Do LC circuits move? 🤔
 
  • Like
Likes   Reactions: etotheipi
kuruman said:
Do LC circuits move? 🤔

Ahaha, you never know! My differential equations prof. uses "equation of motion" to refer to any solution that is a function of time, e.g. ##i(t)##.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
17
Views
1K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K