- 685
- 4
The conic equation has 2 versions in cartesian coordinates:
The general: ##Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0##
And the parametric: ##y^2 = 2px + (e^2-1)x^2##
In polar coordinates, I known just the parametric: ##r = \frac{p}{1+e\cos(\theta)}##
But exist a general form too?
The general: ##Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0##
And the parametric: ##y^2 = 2px + (e^2-1)x^2##
In polar coordinates, I known just the parametric: ##r = \frac{p}{1+e\cos(\theta)}##
But exist a general form too?