Equation of Plane after Coordinate Transformation

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Plane
Click For Summary
SUMMARY

The discussion focuses on deriving the equation of a plane after a coordinate transformation using a specific transformation matrix. The transformation matrix, denoted as [A], is defined as follows: $$ [A] = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\ \frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \end{bmatrix} $$ The original plane equation $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ is transformed into its primed axes form using this matrix. The orthogonality of matrix [A] is confirmed, allowing for the transformation to be expressed as $X' = AX$ and $X = A^tX'$. The final transformed equation is derived from this relationship.

PREREQUISITES
  • Understanding of coordinate transformations
  • Familiarity with matrix operations, specifically orthogonal matrices
  • Knowledge of plane equations in three-dimensional space
  • Proficiency in linear algebra concepts
NEXT STEPS
  • Study the properties of orthogonal matrices in linear algebra
  • Learn how to derive equations of planes in different coordinate systems
  • Explore the application of transformation matrices in computer graphics
  • Investigate the implications of coordinate transformations in physics
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are involved in coordinate transformations, linear algebra, and geometric interpretations of planes in three-dimensional space.

Dustinsfl
Messages
2,217
Reaction score
5
Equation of a plane after a coordinate transformation. Not sure about the second part in regards to finding the plane in the new system.
The angles between the respective axes $O_{x_1'x_2'x_3'}$ and the $O_{x_1x_2x_3}$ Cartesian system are given by the table below

[TABLE="class: grid, width: 500"]
[TR]
[TD][/TD]
[TD]\[x_1\][/TD]
[TD]\[x_2\][/TD]
[TD]\[x_3\][/TD]
[/TR]
[TR]
[TD]\[x'_1\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{\pi}{2}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[/TR]
[TR]
[TD]\[x'_2\][/TD]
[TD]\[\frac{\pi}{3}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{2\pi}{3}\][/TD]
[/TR]
[TR]
[TD]\[x'_3\][/TD]
[TD]\[\frac{2\pi}{3}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{\pi}{3}\][/TD]
[/TR]
[/TABLE]

Determine the transformation matrix between the two sets of axes
$$
[A] = \begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
$$
The matrix $[A]$ is the transformation matrix from the new coordinate system to the old.
The equation of the plane $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ in its primed axes form, that is, in the form $b_1x_1' + b_2x_2' +b_3x_3' = b$.
\begin{alignat*}{3}
\begin{bmatrix}
x_1'\\
x_2'\\
x_3'
\end{bmatrix} & = &
\begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}
\end{alignat*}
 
Last edited by a moderator:
Physics news on Phys.org
dwsmith said:
The matrix $[A]$ is the transformation matrix from the new coordinate system to the old.
The equation of the plane $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ in its primed axes form, that is, in the form $b_1x_1' + b_2x_2' +b_3x_3' = b$.
\begin{alignat*}{3}
\begin{bmatrix}
x_1'\\
x_2'\\
x_3'
\end{bmatrix} & = &
\begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}
\end{alignat*}

The matrix $A$ is orthogonal, that is $A^{t}=A^{-1}$, so $X'=AX$ is equivalent to $X=A^tX'$. In our case,
$$\begin{bmatrix}{x_1}\\{x_2}\\{x_3}\end{bmatrix}=\begin{bmatrix}{\sqrt{2}/2}&{1/2}&{-1/2}\\{0}&{\sqrt{2}/2}&{\sqrt{2}/2}\\{\sqrt{2}/2}&{-1/2}&{1/2}\end{bmatrix}\begin{bmatrix}{x'_1}\\{x'_2}\\{x'_3}\end{bmatrix}$$
Now, $x_1+x_2+x_3=\dfrac{1}{\sqrt{2}}\Leftrightarrow \left(\dfrac{\sqrt{2}}{2}x'_1+\dfrac{1}{2}x'_2-\dfrac{1}{2}x'_3\right)+\ldots=\dfrac{1}{\sqrt{2}}$ and we get the equation of the plane in its primed axes form.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K