MHB Equation of Plane after Coordinate Transformation

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Plane
Dustinsfl
Messages
2,217
Reaction score
5
Equation of a plane after a coordinate transformation. Not sure about the second part in regards to finding the plane in the new system.
The angles between the respective axes $O_{x_1'x_2'x_3'}$ and the $O_{x_1x_2x_3}$ Cartesian system are given by the table below

[TABLE="class: grid, width: 500"]
[TR]
[TD][/TD]
[TD]\[x_1\][/TD]
[TD]\[x_2\][/TD]
[TD]\[x_3\][/TD]
[/TR]
[TR]
[TD]\[x'_1\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{\pi}{2}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[/TR]
[TR]
[TD]\[x'_2\][/TD]
[TD]\[\frac{\pi}{3}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{2\pi}{3}\][/TD]
[/TR]
[TR]
[TD]\[x'_3\][/TD]
[TD]\[\frac{2\pi}{3}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{\pi}{3}\][/TD]
[/TR]
[/TABLE]

Determine the transformation matrix between the two sets of axes
$$
[A] = \begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
$$
The matrix $[A]$ is the transformation matrix from the new coordinate system to the old.
The equation of the plane $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ in its primed axes form, that is, in the form $b_1x_1' + b_2x_2' +b_3x_3' = b$.
\begin{alignat*}{3}
\begin{bmatrix}
x_1'\\
x_2'\\
x_3'
\end{bmatrix} & = &
\begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}
\end{alignat*}
 
Last edited by a moderator:
Physics news on Phys.org
dwsmith said:
The matrix $[A]$ is the transformation matrix from the new coordinate system to the old.
The equation of the plane $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ in its primed axes form, that is, in the form $b_1x_1' + b_2x_2' +b_3x_3' = b$.
\begin{alignat*}{3}
\begin{bmatrix}
x_1'\\
x_2'\\
x_3'
\end{bmatrix} & = &
\begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}
\end{alignat*}

The matrix $A$ is orthogonal, that is $A^{t}=A^{-1}$, so $X'=AX$ is equivalent to $X=A^tX'$. In our case,
$$\begin{bmatrix}{x_1}\\{x_2}\\{x_3}\end{bmatrix}=\begin{bmatrix}{\sqrt{2}/2}&{1/2}&{-1/2}\\{0}&{\sqrt{2}/2}&{\sqrt{2}/2}\\{\sqrt{2}/2}&{-1/2}&{1/2}\end{bmatrix}\begin{bmatrix}{x'_1}\\{x'_2}\\{x'_3}\end{bmatrix}$$
Now, $x_1+x_2+x_3=\dfrac{1}{\sqrt{2}}\Leftrightarrow \left(\dfrac{\sqrt{2}}{2}x'_1+\dfrac{1}{2}x'_2-\dfrac{1}{2}x'_3\right)+\ldots=\dfrac{1}{\sqrt{2}}$ and we get the equation of the plane in its primed axes form.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top