MHB Equation of Plane after Coordinate Transformation

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Plane
Dustinsfl
Messages
2,217
Reaction score
5
Equation of a plane after a coordinate transformation. Not sure about the second part in regards to finding the plane in the new system.
The angles between the respective axes $O_{x_1'x_2'x_3'}$ and the $O_{x_1x_2x_3}$ Cartesian system are given by the table below

[TABLE="class: grid, width: 500"]
[TR]
[TD][/TD]
[TD]\[x_1\][/TD]
[TD]\[x_2\][/TD]
[TD]\[x_3\][/TD]
[/TR]
[TR]
[TD]\[x'_1\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{\pi}{2}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[/TR]
[TR]
[TD]\[x'_2\][/TD]
[TD]\[\frac{\pi}{3}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{2\pi}{3}\][/TD]
[/TR]
[TR]
[TD]\[x'_3\][/TD]
[TD]\[\frac{2\pi}{3}\][/TD]
[TD]\[\frac{\pi}{4}\][/TD]
[TD]\[\frac{\pi}{3}\][/TD]
[/TR]
[/TABLE]

Determine the transformation matrix between the two sets of axes
$$
[A] = \begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
$$
The matrix $[A]$ is the transformation matrix from the new coordinate system to the old.
The equation of the plane $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ in its primed axes form, that is, in the form $b_1x_1' + b_2x_2' +b_3x_3' = b$.
\begin{alignat*}{3}
\begin{bmatrix}
x_1'\\
x_2'\\
x_3'
\end{bmatrix} & = &
\begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}
\end{alignat*}
 
Last edited by a moderator:
Physics news on Phys.org
dwsmith said:
The matrix $[A]$ is the transformation matrix from the new coordinate system to the old.
The equation of the plane $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ in its primed axes form, that is, in the form $b_1x_1' + b_2x_2' +b_3x_3' = b$.
\begin{alignat*}{3}
\begin{bmatrix}
x_1'\\
x_2'\\
x_3'
\end{bmatrix} & = &
\begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}
\end{alignat*}

The matrix $A$ is orthogonal, that is $A^{t}=A^{-1}$, so $X'=AX$ is equivalent to $X=A^tX'$. In our case,
$$\begin{bmatrix}{x_1}\\{x_2}\\{x_3}\end{bmatrix}=\begin{bmatrix}{\sqrt{2}/2}&{1/2}&{-1/2}\\{0}&{\sqrt{2}/2}&{\sqrt{2}/2}\\{\sqrt{2}/2}&{-1/2}&{1/2}\end{bmatrix}\begin{bmatrix}{x'_1}\\{x'_2}\\{x'_3}\end{bmatrix}$$
Now, $x_1+x_2+x_3=\dfrac{1}{\sqrt{2}}\Leftrightarrow \left(\dfrac{\sqrt{2}}{2}x'_1+\dfrac{1}{2}x'_2-\dfrac{1}{2}x'_3\right)+\ldots=\dfrac{1}{\sqrt{2}}$ and we get the equation of the plane in its primed axes form.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K