Equivalence of Adjoint and Conjugate Transpose in Non-Orthogonal Bases?

  • Thread starter Thread starter balletomane
  • Start date Start date
  • Tags Tags
    Transpose
Click For Summary
The discussion centers on the relationship between the adjoint of a linear map and the conjugate transpose of its matrix representation, particularly in relation to orthonormal bases. It is established that the equivalence holds when the basis is orthonormal, but there is uncertainty about its validity in non-orthonormal bases. The example provided illustrates a linear map that is not self-adjoint, with its matrix representation yielding a non-zero entry despite the basis not being orthonormal. Participants clarify that matrices represent linear maps with respect to specific bases, emphasizing the distinction between linear maps and their matrix representations. The conversation concludes with an acknowledgment of the role of inner products in determining orthonormality.
balletomane
Messages
25
Reaction score
0
Is the adjoint of linear map only guaranteed to be equivalent to the conjugate transpose of the matrix when the matrix is taken with respect to an orthonormal basis? Is it sometimes still equivalent even when the basis is not orthonormal?

For the problem I'm working on, I have T(a+bx+cx^2)=bx, which is not self adjoint. Then the matrix wrt to the basis (1,x, x^2) is zero everywhere, but 1 in the second row, second column. The only explanation I can come up with for why it's matrix equals the conj. transpose of the matrix even though it is not self adjoint is that the basis is not orthonormal.

(sorry I don't know how to format things properly)
 
Physics news on Phys.org
Since every basis is, with respect to some inner product, orthonomal, I don't think this is the issue...

You say 'the linear map' and the matrix'. Linear maps and matrices are different things. A matrix is a representation of a linear map with respect to some basis. It does not make sense to talk of a linear map being conjugate to a matrix. Matrices are conjugate to matrices.
 
Sorry, I was being sloppy. I meant the matrix of the linear map. I guess I'm still a little unclear on whether the basis determines if you can consider the matrix of the adjoint as the conjugate transpose of the matrix of the map .

Either way, I hadn't noticed the point about the orthonormality depending on the inner product. So thanks.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K