Equivalence of Frictional and Applied Force

Click For Summary
SUMMARY

The discussion clarifies the relationship between frictional forces and applied forces in the context of dynamics, specifically referencing Halliday Resnick Krane's Chapter 3. When a body is pulled with a spring force equal to the static frictional force, it moves at constant velocity due to zero net force, indicating no acceleration. The transition from static to kinetic friction occurs once the applied force exceeds the static friction limit, leading to a balance where kinetic friction is less than static friction, allowing the body to slide at a constant velocity.

PREREQUISITES
  • Understanding of Newton's Laws of Motion
  • Familiarity with static and kinetic friction concepts
  • Knowledge of force diagrams and net force calculations
  • Basic principles of dynamics in one dimension
NEXT STEPS
  • Study the differences between static and kinetic friction coefficients
  • Learn about Newton's Third Law of Motion and its applications
  • Explore the concept of force equilibrium in dynamic systems
  • Review practical examples of friction in real-world scenarios
USEFUL FOR

Students of physics, educators teaching dynamics, and anyone interested in understanding the principles of friction and motion in mechanics.

mopit_011
Messages
17
Reaction score
8
TL;DR
We can measure frictional forces. By placing the body on a horizontal surface where it experiences a frictional force, we could attach a spring and pull the body with just the right force so that it moves at constant velocity. Why would the body begin moving when the frictional force becomes equivalent to the applied force by the spring?
The following passage is from Halliday Resnick Krane in Chapter 3 which is about dynamics in one dimension.

"We can measure frictional forces. By placing the body on a horizontal surface where it experiences a frictional force, we could attach a spring and pull the body with just the right force so that it moves at constant velocity."

I had assumed that the passage was talking about static frictional force and do not understand why when the frictional force is equal to the applied spring force, the body would move at constant velocity. Wouldn't the net force still be 0 Newtons on the body meaning that it does not accelerate? Thank you so much!
 
Physics news on Phys.org
mopit_011 said:
I had assumed that the passage was talking about static frictional force and do not understand why when the frictional force is equal to the applied spring force, the body would move at constant velocity. Wouldn't the net force still be 0 Newtons on the body meaning that it does not accelerate? Thank you so much!

Are you confusing acceleration and velocity? A body that moves at constant velocity has zero acceleration. "Zero" is a special case of constant velocity.
 
mopit_011 said:
... I had assumed that the passage was talking about static frictional force and do not understand why when the frictional force is equal to the applied spring force, the body would move at constant velocity. Wouldn't the net force still be 0 Newtons on the body meaning that it does not accelerate? Thank you so much!
I believe that the passage was referring to both, static and kinetic forms of friction between the static body and surface first, and then to the relative movement.

Clarification: Because the third law of Newton, the magnitude of the static frictional force is always equal to the magnitude of the spring force, from zero up to its limit (normal force times coefficient of static friction).

Once the magnitude of the force pulling or pushing our spring becomes greater than that limit, the body "detaches" from the "static grip" of the surface, and starts slidding over it.

After a small period of aceleration, the body should start sliding at constant velocity, as a new balance between kinetic friction and spring force is reached.

Because the value of the kinetic coefficient of friction is always smaller than the static one, the spring force should be constant and of lower value than the earlier reached max limit while the body keeps sliding at constant velocity (same velocity at which the force pulling or pushing the spring keeps moving).

You can find a better explanation here:
https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/6-2-friction/
 

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K