- #1
Fahamedi
- 1
- 0
Homework Statement
Find the equivalent capacitance of the infinite system between points a and b (see figure).
Where Vi is the potential difference in the number i capacitor.
Homework Equations
Q=CV
The Attempt at a Solution
For number i capacitors we have the relations
[itex] Q_i=CV_i[/itex] and [itex]Q'_i=CV'_i[/itex]
[itex]\Rightarrow[/itex] [itex]Q\equiv[/itex] [itex]\sum_{i=0}^{\infty}[/itex][itex](Q_i+Q'_i)[/itex]=C[itex]\sum_{i=0}^{\infty}[/itex][itex](Vi+V'i)[/itex]
Now if V is the potential difference V=Va-Vb and we look at the paths in the system,
[itex] V_0+V'_0=V[/itex] ; [itex]V_0+V_1+V'_1=V[/itex] ; ... ; [itex]V_0+V_1+V_2+...+V_i+V'_i=V[/itex] ; ...
From this I found
[itex] V'_i=V_{i+1}+V'_{i+1}[/itex]
[itex]\Rightarrow[/itex] [itex]Q[/itex]=C[itex]\sum_{i=0}^{\infty}[/itex][itex](V_i+V_{i+1}+V'_{i+1})[/itex]
And I'm stuck here, I don't know what to do next, or should I do something different?