1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Equivalent expressions for infinite series

  1. Mar 10, 2014 #1
    Question:

    I was just wondering if there was any error in what I've done in the following steps to find the series representation of ##lnx##. I know ## \frac {1}{x}## is given in the following link by doing having the a function centred at 0, you can let ##f(x) = ∑^∞_{n=0} \frac {f^{(n)}(0)}{n!}x^n## after proving the function ## \frac {1}{x} ## can be represented as a series by doing the remainder test and finding R(x) → 0 as n → 0. Then just integrating.

    I was just looking at an alternate method, which I don't find used as commonly but seems a lot simpler. Here are the steps:

    Relevant Forumla(s):

    ##\frac {1}{1-r} = ∑^∞_{n=0} r^n## for a = 1

    Attempted Solution:

    If we let r = x + 1, then:

    ##\frac {1}{1- (x+1)} = \frac {1}{x} = ∑^∞_{n=0} (x+1)^n##

    Then integrate this function with respect to x to find the representation for lnx

    ## ∑^∞_{n=0} \frac {(x+1)^{n+1}}{n+1} = lnx ##

    For R = 1 on x:(-2,0)

    Is my radius and interval of convergence correct? Just wondering, what exactly does the interval and radius of convergence represent for lnx in this case if this is the domain for the series? Since lnx is not defined on (-2,0) I am not exactly understanding what this means for f(x).
     
    Last edited: Mar 10, 2014
  2. jcsd
  3. Mar 10, 2014 #2

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Could you use the template and proofread what you post ? What relevant equations do you have available ? Do you have a series representation of ln(1+x) at hand ?
     
  4. Mar 10, 2014 #3

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    First of all, integrating ##\frac{1}{x}## doesn't give ##\mathrm{ln}(x)##, but ##\mathrm{ln} |x|##.
     
  5. Mar 10, 2014 #4
    Okay. How exactly would the domain of the series be restricted as to only show for (0,∞) for lnx? Is it possible? Just to confirm, would my solution be correct if I was looking at lnlxl = f(x)? Wouldn't the answers for letting x = -1 give me ln1 for example? So if i just let y = -x and sub y in for x, then i would get the interval for (0,2) right? Please correct me where I am going and explain please since I'd like to get all these misconceptions out of my head before they affect my future understanding of this content.

    If I'm not mistaken, the interval of convergence for the power series representation is the same interval of f(x) that can be assessed using the power series representation, right?
     
    Last edited: Mar 10, 2014
  6. Mar 10, 2014 #5

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You can make that work, but you are being way too sloppy. ##\frac {1}{1- (x+1)}## isn't equal to ##\frac {1}{x}##, it's ##\frac {1}{-x}##. And the integral of that is -log(|x|)+C. It's probably worth checking that the integration constant is zero. Since x is in (-2,0) to make the geometric series converge, you can write that as -log(-x). That's the function you are deriving a series for.
     
    Last edited: Mar 10, 2014
  7. Mar 10, 2014 #6

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    You can't find a power series representation for ##\mathrm{ln}(x)## that works on entire ##(0,+\infty)##. However, for any ##L>0##, you can find one that works on ##(0,L)##.

    No, since you made some arithmetic errors. See Dick's reply. You should obtain

    [tex]\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n+1} = -\mathrm{ln}|x|[/tex]

    for ##x\in (-2,0)##.
     
  8. Mar 10, 2014 #7

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    No, that's not what you should get. There's no x on the left side.
     
  9. Mar 10, 2014 #8

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    Obviously. I'm an idiot.
     
  10. Mar 10, 2014 #9

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Yes, but an idiot of extraordinary talent! MatthewsMD should try and do better.
     
  11. Mar 10, 2014 #10
    Ahhh okay. So I would have to add a constant of integration and my expression is for ln(-x) on (-2,0).
     
  12. Mar 10, 2014 #11

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    The constant of integration turns out to be 0. And your expression isn't for ln(-x). Can you try to be careful for a change and show what you mean?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Equivalent expressions for infinite series
  1. Infinite Series (Replies: 2)

  2. Infinite series. (Replies: 4)

  3. Infinite series. (Replies: 1)

  4. Equivalent expression (Replies: 8)

Loading...