Estimating Maximum Error (Multivariable)

Click For Summary
The discussion revolves around estimating the maximum possible error in the computation of T, defined as T = x(e^y + e^-y), with given values for x and y and their respective maximum errors. The original calculation using the second derivative yielded an estimated error of 0.036, but this contradicts the book's answer of 0.31. Participants suggest using a linear approximation to estimate the error more accurately, as the linear term typically dominates for small values of dx and dy. There is confusion regarding the application of the error formula and whether the correct values for dx and dy were utilized in the calculations. The conversation highlights the importance of understanding linear versus quadratic approximations in error estimation.
d-rock
Messages
14
Reaction score
0
Estimating Maximum Error, Odd Question? (Please Help Today!)

Homework Statement


Suppose that T is to be found from the formula T = x(e^y + e^-y), where x and y are found to be 2 and ln(2) with maximum possible errors of |dx| = 0.1 and |dy| = 0.02. Estimate the maximum possible error in the computed value of T.


Homework Equations


|E| <= (1/2) * M * (|x - xo| + |y - yo|) ^ 2


The Attempt at a Solution


dT/dx = (e^y + e^-y) and dT/dy = x(e^y - e^-y)

d2T/dx2 = 0, d2T/dy2 = x(e^y + e^-y) @ (2, Ln(2)) = 2(2 + 1/2) = 5

and lastly d2T/dxy = (e^y - e^-y) @ (2, Ln(2)) = 2 - 1/2 = 1.5


So I believe the M maximum is 5, for the second derivative with respect to y.

Then, I used the equation:

|E| <= (1/2) * 5 * (|dx| + |dy|)^2 = 2.5 * (0.1 + 0.02)^2 = 0.036


So my answer was 0.036. But the book's answer is 0.31. So I am unsure what went wrong or if I overlooked something...?
 
Last edited:
Physics news on Phys.org
I'm not exctaly sure what you doing? Is that a quadratic apporimation to the error

Why not use a linear approximation to the function at the point by finding the gradient of the function there? (which you already have, but then use it to estimate the error...)

dependent on the function, for small dx & dy, generally the linear term will be largest (unless its an extremum) with higher order terms decreasing in magnitude.
 
I don't know what you mean?

The error formula in my book (which is surrounded by Linearization, etc.) has

|E| <= (1/2)*M*(|x-xo| + |y-yo|)^2

where M is the largest possible value of the second derivatives at the point given. Then I just assumed that (x - xo) and (y-yo) are the dx and dy values they gave me, but I'm guessing it's wrong.

So, what linear approximation?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K