(euclidean geometry) Euclid's elements proposition 13 book

Click For Summary
The discussion focuses on proving that two circles can only touch at one point externally. It explains that when two circles, ABCD and ACK, are considered, the line segment joining points A and C must lie within both circles if they touch. The contradiction arises when it is stated that this line falls within circle ABCD but outside circle ACK, which contradicts the definition that touching circles do not intersect. The confusion lies in understanding how the definition supports the conclusion that the line cannot be outside one circle while being inside the other. Ultimately, the proof reinforces that two circles touching externally can only do so at a single point.
astrololo
Messages
200
Reaction score
3
"Then, since on the circumference of each of the circles ABDC and ACK two points A and C have been taken at random, the straight line joining the points falls within each circle, but it fell within the circle ABCD and outside ACK, which is absurd. Therefore a circle does not touch a circle externally at more points than"

There's only one little detail which I'm not sure of. We are trying to prove that circles which touch one another will only touch at one point. Fine. I understood the first part which treats of a circle in another one. It's only the case where one circle touches another one from the outside. By using proposition 2 of book 3, we prove that the line AC will be inside both of circles since the two points are on each circumference of the two circles. Now, this is where I get lost. We say that "but it (line AC) fell within the circle ABCD and outside ACK" and we prove this by using definition 3 of book 3 (Circles are said to touch one another which meet one another but do not cut one another.) In other words, this definition says that circles which touch another do not cut one another. In our situation, we have two circles which touch one another and are not supposed to cut one another. This is where I don't understand, how does this justify this : "but it fell within the circle ABCD and outside ACK." How do we get that conclusion from the definition?

Thank you!

http://aleph0.clarku.edu/~djoyce/java/elements/bookIII/propIII13.html
 
Physics news on Phys.org
It seems to me that the assumption is that circle ACK touches circle ABCD at two points from the outside, A and C. This assumption is saying that there would be a segment AC that lies outside of ACK. This is the contradiction, since as you have already seen, AC must lie within ACK and ABCD.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
1
Views
2K