dave4000
- 16
- 0
Homework Statement
Solve the euler differential equation
\x^{2}y^{''}+3xy'-3y=0
<br /> \int_X f = \lim\int_X f_n < \infty<br />
by making the ansatz y(x)=cx^{m}, where c and m are constants.<br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> y(x)0=c^{m}&amp;lt;br /&amp;gt; y^{&amp;amp;amp;#039;}(x)=cm^{m-1}&amp;amp;amp;lt;br /&amp;amp;amp;gt; y^{&amp;amp;amp;amp;amp;#039;&amp;amp;amp;amp;amp;#039;}(x)=cm(m-1)^{m-2}&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt; m(m-1)+3m-3=0&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; m^2+2m-3=0&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; (m-1)(m+3)=0&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; m=-3 or m=1&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; Is this the solution or can c be found?
Last edited: