Evaluate Definite Integral Challenge

Click For Summary
SUMMARY

The forum discussion centers around evaluating the definite integral $$\int_0^{\pi} \frac{\cos 4x-\cos 4 \alpha}{\cos x-\cos \alpha} dx$$. Participants, including Ackbach and MarkFL, engaged in the challenge, with Ackbach utilizing the HP 50g calculator to derive the solution. The conversation highlights the balance between manual calculation and the use of technological tools in solving complex integrals.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with trigonometric identities
  • Knowledge of calculus techniques for integration
  • Experience with HP 50g calculator functionalities
NEXT STEPS
  • Study advanced techniques in evaluating definite integrals
  • Explore trigonometric identities and their applications in calculus
  • Learn about the capabilities of the HP 50g calculator for symbolic computation
  • Investigate alternative methods for solving integrals without technology
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of integral evaluation techniques and the role of technology in mathematical problem-solving.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\int_0^{\pi} \frac{\cos 4x-\cos 4 \alpha}{\cos x-\cos \alpha} dx$$
 
Physics news on Phys.org
I'm sure everyone here would consider it cheating, but my handy-dandy HP 50g yields
$$ \int_{0}^{ \pi} \frac{ \cos(4x)- \cos(4 \alpha)}{ \cos(x)- \cos( \alpha)} \, dx=8 \pi \cos^{3}( \alpha)-4 \pi \cos( \alpha)=4 \pi \cos( \alpha)[2 \cos^{2}( \alpha)-1]=4 \pi \cos( \alpha) \cos(2 \alpha).$$
 
My solution:

If we apply a double-angle identity for cosine on the numerator of the integrand, we find:

$$\cos(4x)-\cos(4\alpha)=\left(2\cos^2(2x)-1 \right)-\left(2\cos^2(\alpha)-1 \right)=$$

$$2\left(\cos(2x)+\cos(2\alpha) \right)\left(\cos(2x)-\cos(2\alpha) \right)$$

Applying a double-angle identity for cosine again, we have:

$$4\left(\cos(2x)+\cos(2\alpha) \right)\left(\cos(x)+\cos(\alpha) \right)\left(\cos(x)-\cos(\alpha) \right)$$

Hence, the definite integral may now be written:

$$I=4\int_0^{\pi}\left(\cos(2x)+\cos(2\alpha) \right)\left(\cos(x)+\cos(\alpha) \right)\,dx$$

Using the property $$\int_0^a f(x)\,dx=\int_0^a f(a-x)\,dx$$ we also have:

$$I=4\int_0^{\pi}\left(\cos(2x)+\cos(2\alpha) \right)\left(-\cos(x)+\cos(\alpha) \right)\,dx$$

Adding the two expressions for $I$, we obtain:

$$2I=8\cos(\alpha)\int_0^{\pi}\cos(2x)+\cos(2\alpha)\,dx$$

Hence:

$$I=4\pi\cos(\alpha)\cos(2\alpha)$$

Adrian, glad to see we obtained the same result! :D
 
Thanks for participating, Ackbach and MarkFL and I think both of you deserve a pat on the back for this prompt reply...though Ackbach did depend on a little gizmo to obtain the answer, hehehe...
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K