Evaluate Integral: $\int_{0}^{1}\dfrac{dx}{\sqrt{-ln x}}$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral $\int_{0}^{1}\dfrac{dx}{\sqrt{-\ln x}}$ evaluates to $\sqrt{\pi}$. This result is derived using the substitution $u = -\ln(x)$, which transforms the integral into $\int_{0}^{\infty} e^{-u} u^{-\frac{1}{2}} du$, leading to the conclusion that the integral equals the Gamma function $\Gamma\left(\frac{1}{2}\right)$. An alternative substitution, $-\log x = t^2$, also confirms this result through Euler's integral.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with the Gamma function and its properties
  • Knowledge of substitution techniques in integration
  • Basic concepts of logarithmic functions
NEXT STEPS
  • Study the properties of the Gamma function, particularly $\Gamma\left(\frac{1}{2}\right)$
  • Learn advanced integration techniques, including substitution methods
  • Explore Euler's integral and its applications in calculus
  • Investigate other integrals involving logarithmic functions and their evaluations
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in advanced integration techniques and the properties of the Gamma function.

Albert1
Messages
1,221
Reaction score
0
Please evaluate the following integral:
$\int_{0}^{1}\dfrac{dx}{\sqrt{-ln x}}$
 
Physics news on Phys.org
Re: evaluate integral-01

Albert said:
Please evaluate the following integral:
$\int_{0}^{1}\dfrac{dx}{\sqrt{-ln x}}$

[math]\displaystyle \begin{align*} \int_0^1{\frac{dx}{\sqrt{-\ln{(x)}}}} &= \int_0^1{\frac{-x\,dx}{-x\,\sqrt{-\ln{(x)}}}} \end{align*}[/math]

Now making the substitution [math]\displaystyle \begin{align*} u = -\ln{(x)} \implies du = -\frac{dx}{x} \end{align*}[/math] and noting that [math]\displaystyle \begin{align*} u(1) = 0 \end{align*}[/math] and as [math]\displaystyle \begin{align*} x \to 0^+ , u \to +\infty \end{align*}[/math], the integral becomes

[math]\displaystyle \begin{align*} \int_0^1{\frac{x\,dx}{x\,\sqrt{-\ln{(x)}}}} &= \int_{\infty}^0{\frac{-e^{-u}\,du}{\sqrt{u}}} \\ &= \int_0^{\infty}{e^{-u}\,u^{-\frac{1}{2}}\,du} \\ &= \int_0^{\infty}{u^{\frac{1}{2} - 1 } \, e^{-u}\,du} \\ &= \Gamma{ \left( \frac{1}{2} \right) } \\ &= \sqrt{\pi} \end{align*}[/math]
 
Re: evaluate integral-01

Another way: using the substitution $-\log x= t^2$ (or equivalently $x=e^{-t^2}$) and the Euler's integral.

$$\int_0^1\frac{dx}{\sqrt{-\log x}}=\int_{+\infty}^0\frac{-2te^{-t^2}dt}{\sqrt{t^2}}=2\int_0^{+\infty}e^{-t^2}dt=2\frac{\sqrt{\pi}}{2}=\sqrt{\pi}$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K