MHB Evaluate the definite integral x/√(e^x+(2+x)^2)

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate

$$I = \int_{-2}^{0} \frac{x}{\sqrt{e^x+(2+x)^2}}\,dx$$
 
Mathematics news on Phys.org
Suggested solution:

Use the substitution:

\[v = (x+2)e^{-x/2}.\]

\[dv = -\frac{x}{2}e^{-x/2}dx\]

\[\frac{xdx}{\sqrt{e^x+(x+2)^2}} = \frac{xe^{-x/2}dx}{\sqrt{1+(x+2)^2e^{-x}}} = \frac{-2dv}{\sqrt{1+v^2}}\]

Hence, the integral becomes:

\[I = \int_{-2}^{0}\frac{xdx}{\sqrt{e^x+(x+2)^2}} = -2\int_{0}^{2}\frac{dv}{\sqrt{1+v^2}} = -2\sinh^{-1}(2)=e^{-2}-e^2.\]
 

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K