MHB Evaluate the definite integral x/√(e^x+(2+x)^2)

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate

$$I = \int_{-2}^{0} \frac{x}{\sqrt{e^x+(2+x)^2}}\,dx$$
 
Mathematics news on Phys.org
Suggested solution:

Use the substitution:

\[v = (x+2)e^{-x/2}.\]

\[dv = -\frac{x}{2}e^{-x/2}dx\]

\[\frac{xdx}{\sqrt{e^x+(x+2)^2}} = \frac{xe^{-x/2}dx}{\sqrt{1+(x+2)^2e^{-x}}} = \frac{-2dv}{\sqrt{1+v^2}}\]

Hence, the integral becomes:

\[I = \int_{-2}^{0}\frac{xdx}{\sqrt{e^x+(x+2)^2}} = -2\int_{0}^{2}\frac{dv}{\sqrt{1+v^2}} = -2\sinh^{-1}(2)=e^{-2}-e^2.\]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K