- 24,488
- 15,057
If you test quantum theory, it's not given as the foundation but checked by observations. Physics is always circular in this sense, and a "test" means a "consistency check" between the theory used to construct your apparatus and the true outcome of the measurement in comparison what's really measured.A. Neumaier said:But theoretical physics does not need to be circular; one can have a good theory with a noncircular interpretation in terms of experiments.
While one is still learning about the phenomena in a new theory, circularity is unavoidable. But once things are known for some time (and quantum physics is known in this sense for a very long time) the theory becomes the foundation and physical equipment and experiments are tested for quality by how well they match the theory. Even the definitions of units have been adapted repeatedly to better match theory!But this gives you energy differences, not energy levels. This does not even closely resemble Born's rule!
Moreover, it is a highly nontrivial problem in spectroscopy to deduce from a collection of measured spectral lines the energy levels! And it cannot be done for large molecules over an extended energy range, let alone for a brick of iron.No. It depends also on selection rules and how much they are violated in a particular case. It is quite complicated.I mentioned everything necessary. To approximately measure the two quadratures of photons in a beam one passes them through a symmetric beam splitter and then measured the resulting superposition of photons in the two beams by a homodyne detection on each beam. Details are for example in a nice little book by Ulf Leonhardt, Measuring the quantum state of light. This is used in quantum tomography; the link contains context and how the homodyne detection enters.
Concerning the hydrogen atom, in this sense you've never measured the energy levels but only differences by using spectroscopy, and the prediction of the seen spectrum, including the selection rules are, of course, based on Born's rule: You calculate transition-matrix elements and take their modulus squared! I didn't say that to get the spectrum of the gas is simple, but it's finally based on these very foundations of QT.
How a very similar problem is treated in heavy-ion physics, you can read here:
http://arxiv.org/abs/0901.3289
Concerning homodyne detection, what's measured according to the Wikipedia article (which is full of inaccuracies by the way, don't need to go into here) are intensities, as described in my example from Scully's textbook.