Evaluating Integrals Involving Trig Functions

Click For Summary
SUMMARY

The discussion focuses on evaluating two integrals involving trigonometric functions. The first integral, $\displaystyle \int_0^{2\pi} \frac{x \sin^{2n}(x)}{\sin^{2n}(x)+\cos^{2n}(x)}dx$, is solved using properties of definite integrals, leading to the conclusion that $I = \pi^2$. The second integral, $\displaystyle \int_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4(x)+\cos^4(x)}dx$, is evaluated to yield $I = \frac{\pi^2}{16}$ through substitution and manipulation of trigonometric identities.

PREREQUISITES
  • Understanding of definite integrals and their properties
  • Familiarity with trigonometric functions and identities
  • Knowledge of integration techniques, including substitution
  • Experience with manipulating expressions involving sine and cosine functions
NEXT STEPS
  • Study properties of definite integrals in depth
  • Learn advanced techniques for integrating trigonometric functions
  • Explore the use of substitutions in integral calculus
  • Investigate the implications of symmetry in integrals
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of integral calculus, particularly in the context of trigonometric functions.

sbhatnagar
Messages
87
Reaction score
0
Evaluate:

1. $\displaystyle \int_0^{\displaystyle 2\pi} \frac{x \sin^{2n}(x)}{\sin^{2n}(x)+\cos^{2n}(x)}dx$, $n>0$

2. $\displaystyle \int_0^{ \displaystyle \pi \over \displaystyle 2} \frac{x \sin x \cos x}{\sin^{4}(x)+\cos^{4}(x)}dx$
 
Physics news on Phys.org
In 1) - is $n$ a positive integer?
 
Jester said:
In 1) - is $n$ a positive integer?

Yes! Sorry, I should I have mentioned at the beginning.
 
Here is a hint: Try using properties of definite integrals.
 
Putting $x \mapsto 2\pi-x$ we have:$\displaystyle I = \int_{0}^{2\pi}\frac{x\sin^{2n}{x}}{\sin^{2n}{x}+ \cos^{2n}{x}}\;{dx} = \int_{0}^{2\pi}\frac{(2\pi-x)\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx} = 2\pi\int_{0}^{2\pi}\frac{\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx}-I$.Thus $ \displaystyle I = \pi\int_{0}^{2\pi}\frac{\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx} $. Now, write this from $[0, ~ \pi/2]$ and $[\pi/2, ~ 2\pi]$, then:$\displaystyle I = \pi\int_{0}^{\pi/2}\frac{\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx} +\pi\int_{\pi/2}^{2\pi}\frac{\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx}$. Put $x\mapsto \frac{\pi}{2}-x$ and $x\mapsto \frac{5\pi}{2}-x$, then:$\displaystyle I = \pi\int_{0}^{\pi/2}\frac{\cos^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx} +\pi\int_{\pi/2}^{2\pi}\frac{\cos^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx}$. Add this and the above, then we've:

$\displaystyle 2I = 2\pi^2 \Rightarrow \boxed{I = \pi^2}$. I'll leave the second one for others to try.
 
Last edited:
Sherlock said:
Putting $x \mapsto 2\pi-x$ we have:$\displaystyle I = \int_{0}^{2\pi}\frac{x\sin^{2n}{x}}{\sin^{2n}{x}+ \cos^{2n}{x}}\;{dx} = \int_{0}^{2\pi}\frac{(2\pi-x)\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx} = 2\pi\int_{0}^{2\pi}\frac{\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx}-I$.Thus $ \displaystyle I = \pi\int_{0}^{2\pi}\frac{\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx} $. Now, write this from $[0, ~ \pi/2]$ and $[\pi/2, ~ 2\pi]$, then:$\displaystyle I = \pi\int_{0}^{\pi/2}\frac{\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx} +\pi\int_{\pi/2}^{2\pi}\frac{\sin^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx}$. Put $x\mapsto \frac{\pi}{2}-x$ and $x\mapsto \frac{5\pi}{2}-x$, then:$\displaystyle I = \pi\int_{0}^{\pi/2}\frac{\cos^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx} +\pi\int_{\pi/2}^{2\pi}\frac{\cos^{2n}{x}}{\sin^{2n}{x}+\cos^{2n}{x}}\;{dx}$. Add this and the above, then we've:

$\displaystyle 2I = 2\pi^2 \Rightarrow \boxed{I = \pi^2}$. I'll leave the second one for others to try.

Yeah, that's right.
 
Solution to 2.

Let $\displaystyle I= \int_0^{\pi / 2}\frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx$

By a property of definite integrals, we get

$\displaystyle I= \int_0^{\pi /2}\dfrac{\displaystyle \left( \dfrac{\pi}{2} -x\right) \sin \left( \dfrac{\pi}{2} -x\right) \cos \left( \dfrac{\pi}{2} -x\right)}{ \sin^{4}\left( \dfrac{\pi}{2} -x\right) + \cos^4 \left( \dfrac{\pi}{2} -x\right)}dx = \int_0^{\pi /2}\dfrac{\displaystyle \left( \dfrac{\pi}{2} -x\right) \sin x \cos x}{ \sin^{4}x+ \cos^4 x }dx ={\pi \over 2}\int_0^{\pi / 2}\frac{ \sin x \cos x}{\sin^4 x + \cos^4 x}dx -I$

$\displaystyle \therefore \ \ 2I= \frac{\pi}{2} \int_0^{\pi/2}\frac{\sin x \cos x}{\sin^4 x + \cos ^4 x}dx =\frac{\pi}{2} \int_0^{\pi /2}\frac{\tan x \sec^2 x}{1+\tan^4 x }dx$

Substitute $t= \tan^2 x$ and $dt = 2 \tan x \sec^2 x \ dx$.

$\displaystyle 2I= \frac{\pi}{4}\int_{0}^{\infty}\frac{1}{1+t^2}dt = \frac{\pi^2}{8}$

$\displaystyle \therefore \ \ I= \frac{\pi^2}{16}$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
989
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 5 ·
Replies
5
Views
2K