I Evaluation of the sum 1^m+3^m+5^m+ ....................(2n+1)^{m}

  • Thread starter Thread starter Rfael69
  • Start date Start date
  • Tags Tags
    Summation
Click For Summary
The discussion focuses on evaluating the sum of odd powers, specifically the series 1^m + 3^m + 5^m + ... + (2n+1)^m. It highlights the relationship between this sum and the normal sum of integers raised to the power m, noting the involvement of Bernoulli Polynomials. Participants suggest starting the evaluation by expressing (2k+1)^m as a binomial expansion. The conversation emphasizes the importance of breaking down the series into manageable components for calculation. Overall, the evaluation of this sum involves advanced mathematical concepts and techniques.
Rfael69
Messages
2
Reaction score
0
how can i evaluate the sum $$
1^m+3^m+5^m+ ....................(2n+1)^{m} $$



for the case of the normal sum $$ 1^m +2^m +........................+n^, $$ for positive 'm' i know they are related to the Bernoulli Polynomials
 
Mathematics news on Phys.org
You want to calculate ##\sum_{k=0}^m(2k+1)^m.## Next, ##(2k+1)^m=\sum_{j=0}^m \binom{m}{j}(2k)^j.## I would start with that.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K