Undergrad Evaluation of the sum 1^m+3^m+5^m+ ....................(2n+1)^{m}

  • Thread starter Thread starter Rfael69
  • Start date Start date
  • Tags Tags
    Summation
Click For Summary
The discussion focuses on evaluating the sum of odd powers, specifically the series 1^m + 3^m + 5^m + ... + (2n+1)^m. It highlights the relationship between this sum and the normal sum of integers raised to the power m, noting the involvement of Bernoulli Polynomials. Participants suggest starting the evaluation by expressing (2k+1)^m as a binomial expansion. The conversation emphasizes the importance of breaking down the series into manageable components for calculation. Overall, the evaluation of this sum involves advanced mathematical concepts and techniques.
Rfael69
Messages
2
Reaction score
0
how can i evaluate the sum $$
1^m+3^m+5^m+ ....................(2n+1)^{m} $$



for the case of the normal sum $$ 1^m +2^m +........................+n^, $$ for positive 'm' i know they are related to the Bernoulli Polynomials
 
Mathematics news on Phys.org
You want to calculate ##\sum_{k=0}^m(2k+1)^m.## Next, ##(2k+1)^m=\sum_{j=0}^m \binom{m}{j}(2k)^j.## I would start with that.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K