1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Even number problem in book volume

  1. Sep 1, 2013 #1
    1. The problem statement, all variables and given/known data
    Hey, I got an even number from my book trying to double check it so if you wouldn't mind I would appreciate some comfirmaion or denial.

    Find the volume of the solid obtained by rotated te region bounded by the given curves about the specificed line.
    y = x, y =0, x =2, x =4 : about x = 1

    2. Relevant equations

    I set up this integral

    I = ∏∫ dy - ∏(1-y^2)^2 dy

    I did this integral between [0,1]

    3. The attempt at a solution


    I got ∏( y-(y^5/5) + (2/3)y^3 - 1)
    I worked it out and got (7/15)∏

    Yes no maybe so ?Thx
     
  2. jcsd
  3. Sep 1, 2013 #2
    Is my integral set up properly?
     
  4. Sep 1, 2013 #3
    I'm not sure about the above integral, but maybe this ?

    [itex]V=2\pi\int (x-1)x\,dx[/itex]
     
  5. Sep 1, 2013 #4
    I don't know I'm trying to see if mine is correct.
     
  6. Sep 1, 2013 #5

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Definitely no, for several reasons.

    One thing you should be learning about integrals is when to choose ##x## or ##y## as your integration variable, which is the same choice as whether to use disks or shells. In this problem the best choice would be ##x## (shells). Do you see why that would be preferred, just from the figure and before any calculations are done?

    If you insist on using ##y## (disks), then your first mistake is the limits. ##y## doesn't go from ##0## to ##1##. And your integrand doesn't make any sense either. Have you drawn a picture of the relevant region and shaded the area that is being rotated? That's where you should start.
     
  7. Sep 1, 2013 #6
    The only two methods that I see in this section are A = pi(radius)^2 and A = pi(radius outer)^2 - pi(radius inner)^2
     
  8. Sep 1, 2013 #7
    How does y not go from 0 to 1 I'm revolving around x=1. So the intersection of the line y = x and x =1 is (1,1) so the bounds go from [0,1] for the integral.
     
  9. Sep 1, 2013 #8
    I have come up with this integral
    I = ∏∫(y^2 -2y +1) dy
    from [0,1]
     
  10. Sep 1, 2013 #9
    Wait I keep getting this damn thing confused on which is going which way. I did it the same as my last post but with I = PI (integral) (1-x)^2 dx. between 0 and 1.
    I got the same answer
     
  11. Sep 1, 2013 #10

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Instead of contradicting what I just told you, do like I said, draw a picture of the region. Show me the shaded region that is being rotated. Start there. Nowhere else if you want another reply from me.
     
  12. Sep 1, 2013 #11
    I did that dude. I have it right here on my desk. You have the line y=x then you have the line x = 1. So you have that little triangle that you are going to rotate. I'm sure you know what I'm looking at. OK now explain this method please.
     
  13. Sep 1, 2013 #12

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    You haven't earned the right to address me as "dude". It wastes both of our time when you are working from an incorrect picture, which you have just described, and we don't know it. No wonder your integrals don't make sense. So go back to square one, figure out the correct region, and post an image of it. You might then even understand why I made the comments I did in post #5.
     
  14. Sep 1, 2013 #13
    How is that not the correct picture. The problem states
    18.) y = x, y = 0, x = 2, x = 4: about x =1
    So I draw the line y=x in my graph and I draw the lines x = 2 and = =4

    How is my graph incorrect. I have no way to put an image on here.
     
  15. Sep 1, 2013 #14

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    What do ##x=2## and ##x=4## have to do with this problem?
     
  16. Sep 1, 2013 #15
    The bounds ? So it is the chunk between 2 and 4?
     
  17. Sep 1, 2013 #16
    I'm confused though do I include the chunk between x = 2 and x = 4? So I will have a hole between x=2 and the line x = 1 that I'm revolving it around?
     
  18. Sep 1, 2013 #17
    OK I want the chunk between 2 and 4. But what do I do about the line y = x? Because it makes that block between 2 and 4 cut weird.
     
  19. Sep 1, 2013 #18

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    So what? y=x is the top. This is where you decide whether disks or shells is easiest. Then you work the problem.
     
  20. Sep 1, 2013 #19
    It says to rotate it about x = 1. All I have in the chapter is disk or shells. If I'm going to do it around x = 1. So I will do it as a function of y. So then that makes x = 4 the top and x = 2 the bottom. But what do I do about the line y = x that cuts it? Do I have to subtract off the little triangle that would be included if I just integrated between x = 4 and x = 2?
     
  21. Sep 1, 2013 #20
    OK, I tried. This is what I did.

    I said the radius furthest out R = 3 , the difference between the axis of rev. x =1 and the line x = 4
    I did the same thing for the x =2 and this radius r = 1
    I then figured out the area of the triangle that was included where y =x cuts between x =2 and x = 4
    Got (1/2)base x height and got 2. Just subtracting the points
    Then I did

    I = ∏∫(3)^2 dy - ∏∫dy - 2
    between 0 and 4.

    I got ∏(3y-y) and when I plugged in valued I got 8∏-2 = 23.13
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Even number problem in book volume
  1. Prove a Number is Even (Replies: 5)

  2. Volume Problem (Replies: 4)

Loading...