Every sequence of bounded functions that is uniformly converent is uniformly bounded

Click For Summary
The discussion centers on proving that every sequence of bounded functions that is uniformly convergent is also uniformly bounded. Participants clarify that a sequence of bounded functions means each function in the sequence has a bound, denoted as |fn(x)| < Mn. They emphasize that uniform convergence implies that for a given epsilon, the functions converge uniformly to a limit function f, allowing for the establishment of a single bound M for all functions in the sequence. A critical point raised is that the limit function f does not need to be bounded, as illustrated by the example f(x) = x, which is unbounded despite being finite. Ultimately, the proof concludes that the sequence is uniformly bounded, confirming the theorem's validity.
rumjum
Messages
38
Reaction score
0

Homework Statement



Prove that every sequence of bounded functions that is uniformly convergent is uniformly bounded.

Homework Equations



Let {fn} be the sequence of functions and it converges to f. Then for all n >= N, and all x, we have |fn -f| <= e (for all e >0). ---------- (1)

The Attempt at a Solution



This problem is from Rudin, 7.1. I am not clear about the part of "bounded function sequence".
But I suppose this is what I is meant.

|fn(x)| < Mn. , n = 1,2,3...


Also, I am unsure if f(x) (to which the sequene converges is bounded or not). That is is |f(x)| < some real number for all x. I suppose yes. But not sure. Here is my solution anyways.


=> |f1(x)| < M1,
|f2(x)| < M2, ...
|fN-1(x)| < M(N-1).

Also, let e =1 in (1), then n >= N implies that |fn-f| <=1

Hene, for n >=N and for all x , we have |fn| <= |fn-f| + |f| = |f| +1

Now, let M = max {M1,M2,...M(N-1), 1 +|f|}. for all x, where M is a real number.

If I can somehow state that |f|+1 is bounded, then for all n and for all x

|fn(x)| < M. Hence, the sequence is uniformly bounded.

I guess I can safely assume that |f(x)| < infinity for all x. Because
|fn(x)| < Mn. for all n.

Hence, lim (n->infinity) |fn(x)| < infinity for else for some n >N, we shall have an unbounded function in the sequence. But for lim(n->infinity) |fn(x)| = |f(x)|. Hence, |f(x)| < infinity and so is bounded.

Can someone verify? Thanks.
 
Last edited:
Physics news on Phys.org
The most important clue here is uniform convergence.
Without that property, the theorem isn't true.

I'll look over your proof later on, if necessary.
 
Since you were wondering about "sequence of bounded functions" (yes, for every n, there exist number Mn such that |fn(x)|< Mn), as you clear on "uniformly bounded"? That simply means that "there exist an number M such that, for all n, |fn(x)|< M". That is, that you can choose a single number M rather than a different Mn for each n.

Notice that this does NOT ask you to prove anything about the limit of the sequence- and, in particular, |f(x)|< infinity does NOT mean the function is bounded! The simple function f(x)= x satisfies the condition that |f(x)|< infinity, but is not a bounded function.
 
HallsofIvy said:
Notice that this does NOT ask you to prove anything about the limit of the sequence- and, in particular, |f(x)|< infinity does NOT mean the function is bounded! The simple function f(x)= x satisfies the condition that |f(x)|< infinity, but is not a bounded function.

That is an important point that you brought up. Thanks, for that. I solved the problem by showing that |f(x)| < M(N+1)+1 for e=1 and |fn| < Mn. And, since for n >=N, the function is uniformly bounded, we have |f(x)| < 1 + M(N+1). Henc,e |f(x)| is bounded.

Thanks, again.
 
HallsofIvy said:
Since you were wondering about "sequence of bounded functions" (yes, for every n, there exist number Mn such that |fn(x)|< Mn), as you clear on "uniformly bounded"? That simply means that "there exist an number M such that, for all n, |fn(x)|< M". That is, that you can choose a single number M rather than a different Mn for each n.

Notice that this does NOT ask you to prove anything about the limit of the sequence- and, in particular, |f(x)|< infinity does NOT mean the function is bounded! The simple function f(x)= x satisfies the condition that |f(x)|< infinity, but is not a bounded function.


That is an important point that you brought up. Thanks, for that. I solved the problem by showing that |f(x)| < M(N+1)+1 for e=1 and |fn| < Mn. And, since for n >=N, the function is uniformly bounded, we have |f(x)| < 1 + M(N+1). Henc,e |f(x)| is bounded.

Thanks, again.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
982
  • · Replies 34 ·
2
Replies
34
Views
3K