I Ex. 19 Gauge Fields, Knots & Gravity: Is Rotation Correct?

Click For Summary
The discussion focuses on the pushforward of coordinate vector fields under a counterclockwise rotation in R². Participants clarify that the correct expressions for the pushforward of the vector fields are φ_*∂_x = (cos(θ))∂_x - (sin(θ))∂_y and φ_*∂_y = (sin(θ))∂_x + (cos(θ))∂_y. There is a common misconception that the pushforward should yield a different result, but calculations confirm the correct transformation. The conversation also touches on verifying results through specific test functions and tangent vectors along curves. Overall, the participants agree on the correctness of the derived expressions and reference errata for further clarification.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Wanted to check with you guys that I'm not going crazy...

Exercise 19: Let ##\phi : \mathbf{R}^2 \rightarrow \mathbf{R}^2## be a counterclockwise rotation by angle ##\theta##. Let ##\partial_x, \partial_y## be the coordinate vector fields on ##\mathbf{R}^2##. Show, at any point of ##\mathbf{R}^2##, that ##\phi_*\partial_x = (\cos{\theta})\partial_x - (\sin{\theta}) \partial_y## and also ##\phi_*\partial_y = (\sin{\theta})\partial_x + (\cos{\theta})\partial_y##

The effect of the pushforward is just a rotation of the vectors, so presumably one would instead expect ##\phi_* \partial_x = (\cos{\theta})\partial_x + (\sin{\theta})\partial_y##, right?

The rotation is ##(x,y) \mapsto \phi(x,y) = (x\cos{\theta} - y\sin{\theta}, \ x\sin{\theta} + y\cos{\theta})##. Let ##f \in C^{\infty}(\mathbf{R}^2)## be a test function, then the pushforward of ##\partial_x## is\begin{align*}
((\phi_* \partial_x)(f))(\phi(x),\phi(y)) &= (\partial_x(\phi^* f))(x,y) \\
&= (\partial_x (f \circ \phi))(x,y) \\
\end{align*}One can determine the ##x##-component of ##\phi_* \partial_x## by letting ##f=x##,\begin{align*}
((\phi_* \partial_x)(x))(\phi(x),\phi(y)) &= (\partial_x(x \circ \phi))(x,y) \\
&= (\partial_x(x\cos{\theta} - y\sin{\theta}))(x,y) \\
&= \cos{\theta}
\end{align*}Similarly, put ##f=y## to obtain ##((\phi_* \partial_x)(y))(\phi(x),\phi(y)) = \sin{\theta}##. Then\begin{align*}
\phi_* \partial_x = (\cos{\theta})\partial_x + (\sin{\theta})\partial_y
\end{align*}as before. I haven't misread something?
 
Physics news on Phys.org
I agree with your conclusion. Alternatively, consider curve ##\gamma: t \mapsto (t,a)##, which has ##\partial_x## as its tangent vector. You will find that ##\phi \circ \gamma (t) = (t \cos\theta - a \sin\theta, t \sin\theta + a \cos\theta)##, which clearly has the tangent vector ##\cos\theta \partial_x + \sin\theta \partial_y##.
 
  • Like
Likes ergospherical
Great, thanks!
 
Is there an errata for the errata? :wink:
1641022076628.png
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
955
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
771
Replies
1
Views
1K
Replies
47
Views
6K