Exact meaning of the mass M in the Kerr metric event horizon formula?

Click For Summary
SUMMARY

The mass M in the Kerr metric event horizon formula, given by $$r_+ = \frac{GM}{c^2}\left(1+\sqrt{1-\frac{J^2c^2}{M^4G^2}}\right)$$, corresponds to the total mass equivalent of the black hole, not the irreducible mass. The distinction is critical as M represents the Keplerian mass measured by an observer at infinity, while the irreducible mass, denoted as M_{irr}, has a different physical interpretation. Texts such as Wald's General Relativity and Misner, Thorne & Wheeler clarify this distinction, emphasizing that M and M_{irr} are not interchangeable.

PREREQUISITES
  • Understanding of Kerr black holes and their metrics
  • Familiarity with general relativity concepts
  • Knowledge of mass-energy equivalence in physics
  • Ability to interpret mathematical formulas in theoretical physics
NEXT STEPS
  • Study the relationship between M and M_{irr} in Kerr spacetime as outlined in Wald's General Relativity
  • Explore Misner, Thorne & Wheeler's treatment of black hole thermodynamics
  • Investigate the implications of rotational mass-energy in vacuum solutions
  • Review the mathematical derivation of the Kerr metric and its physical interpretations
USEFUL FOR

Physicists, astrophysicists, and students of general relativity seeking to deepen their understanding of black hole metrics and the distinctions between different mass definitions in Kerr spacetime.

Scott92
Messages
4
Reaction score
0
TL;DR
Trying to determine whether the mass M in the kerr metric event horizon formula is the irreducible mass or the total mass-energy.
Posting this as I have so far not been able to find a straightforward answer to the following question. The formula for the outer event horizon of a kerr black hole is given by the following equation:

$$r_+ = \frac{GM}{c^2}\left(1+\sqrt{1-\frac{J^2c^2}{M^4G^2}}\right)$$
Where ##J## is the angular momentum of the black hole. My question is this: does the mass ##M## in this equation correspond to the irreducible mass of the black hole? Or does it correspond to the total mass equivalent of the black hole when the rotational mass-energy is included?

Mathematically speaking, does ##M = M_{irr}##? Or does ##M = \sqrt{M_{irr}^2 + \frac{J^2c^2}{4M_{irr}^2G^2}}##?

I should also stress that, despite my best efforts, I've yet to come across a textbook that answers this explicitly, with the distinction seemingly being taken for granted. Even when talking to others informally about this, there does not seem to be a consensus (there are already answers/comments stating opposing viewpoints in a Physics StackExchange thread that I made). So if anyone has an answer, a source would be greatly appreciated if possible, thanks!
 
Physics news on Phys.org
Scott92 said:
does the mass ##M## in this equation correspond to the irreducible mass of the black hole?
No. That should be obvious from the formula you give later on, which you will find in most treatments of Kerr spacetime, and which gives a relationship between ##M## and ##M_{irr}##.

Scott92 said:
does it correspond to the total mass equivalent of the black hole when the rotational mass-energy is included?
"Rotational mass-energy" is not a well-defined concept for Kerr spacetime, because it is a vacuum solution so there is no matter "rotating" whose rotational kinetic energy could be assessed.

The physical meaning of ##M## can be read off from the limit of the metric as ##r \to \infty##, which tells you that ##M## is the Keplerian mass of the hole as measured by an observer at rest at infinity. (This also tells you that ##M## cannot be the same thing as the irreducible mass, which has a different physical meaning.)

Scott92 said:
I've yet to come across a textbook that answers this explicitly, with the distinction seemingly being taken for granted.
When a textbook explicitly gives you two different symbols, ##M## and ##M_{irr}##, it does take it for granted that you will understand that those symbols refer to two different quantities. Particularly when an explicit formula is given relating the two quantities that makes it obvious that they are not equal. It will also expect you to understand that it knows which of the two quantities it means in any particular formula, such as the formula for the Kerr metric, so you can take it for granted that if ##M## appears in the metric, it's not a mistake, they didn't mean to say ##M_{irr}## and just forget to include the subscript.
 
Scott92 said:
if anyone has an answer, a source would be greatly appreciated
Irreducible mass is discussed in pretty much every GR textbook I've seen that discusses Kerr spacetime at all. See, for example, Wald section 12.4 or Misner, Thorne & Wheeler Box 33.4.
 
PeterDonis said:
When a textbook explicitly gives you two different symbols, ##M## and ##M_{irr}##, it does take it for granted that you will understand that those symbols refer to two different quantities. Particularly when an explicit formula is given relating the two quantities that makes it obvious that they are not equal. It will also expect you to understand that it knows which of the two quantities it means in any particular formula, such as the formula for the Kerr metric, so you can take it for granted that if ##M## appears in the metric, it's not a mistake, they didn't mean to say ##M_{irr}## and just forget to include the subscript.
I did not get both of these formulas from the same source. I merely came across the event horizon formula with the symbol M simply labelled as "the mass of the black hole". I then independently learnt of the formula for the irreducible mass from another source. So yes, the distinction was entirely obvious to me - I just had yet to encounter an explicit explanation from a single source that clarified which mass was the one referred to in the event horizon formula.

Anyways, I appreciate the answer since you actually provided a corresponding source, so thanks for that.
 
Scott92 said:
I did not get both of these formulas from the same source.
You will, though, if you look at the sources I provided. Plenty of other textbook treatments will also give both of them.
 

Similar threads

  • · Replies 43 ·
2
Replies
43
Views
4K
  • · Replies 73 ·
3
Replies
73
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K