MHB Example on Triangular Rings - Lam, Example 1.14

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading T. Y. Lam's book, "A First Course in Noncommutative Rings" (Second Edition) and am currently focussed on Section 1:Basic Terminology and Examples ...

I need help with an aspect of Example 1.14 ... ...

Example 1.14 reads as follows: https://www.physicsforums.com/attachments/5984
https://www.physicsforums.com/attachments/5985I cannot follow why the results in Table 1.16 follow ...

For example, according to Table 1.16 ...

$$mr = 0$$ for all $$m \in M$$ and $$r \in R$$ ... but why

Similarly I don't follow the other entries in the Table ...

Can someone please help ...

Peter
 
Physics news on Phys.org
We have:

$\begin{pmatrix}0&m\\0&0\end{pmatrix}\begin{pmatrix}r&0\\0&0\end{pmatrix} = \begin{pmatrix}0&0\\0&0\end{pmatrix}$
 
Deveno said:
We have:

$\begin{pmatrix}0&m\\0&0\end{pmatrix}\begin{pmatrix}r&0\\0&0\end{pmatrix} = \begin{pmatrix}0&0\\0&0\end{pmatrix}$
Hi Deveno,

Thanks for the help ... but I do not follow you ...

We have $$A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$$

where I have been thinking that $$M$$ and $$R$$ are a set of elements (actually a bimodule and left $$R$$-module) that we select elements from ... and then multiply ... that is, M and R are sets not actually matrices themselves ...

... ... BUT ... you seem to have interpreted $$M$$ and $$R$$ as matrices ... so you select $$m$$ from $$M$$ and $$r$$ from $$R$$ and write:

$$mr = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ ...

I do not understand how $$MR$$ in the table becomes a matrix multiplication ...Can you please clarify ...?

Peter
 
Peter said:
Hi Deveno,

Thanks for the help ... but I do not follow you ...

We have $$A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$$

where I have been thinking that $$M$$ and $$R$$ are a set of elements (actually a bimodule and left $$R$$-module) that we select elements from ... and then multiply ... that is, M and R are sets not actually matrices themselves ...

... ... BUT ... you seem to have interpreted $$M$$ and $$R$$ as matrices ... so you select $$m$$ from $$M$$ and $$r$$ from $$R$$ and write:

$$mr = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ ...

I do not understand how $$MR$$ in the table becomes a matrix multiplication ...Can you please clarify ...?

Peter

$R$ is a ring, $S$ is a ring, and $M$ is an $(R,S)$-bimodule. A typical element of $A$ is:

$\begin{pmatrix}r&m\\0&s\end{pmatrix}$ with $r\in R, m\in M$, and $s\in S$.

We have an isomorphism (of abelian groups): $A \to R \oplus M \oplus S$ given by:

$\begin{pmatrix}r&m\\0&s\end{pmatrix} \mapsto (r,m,s)$.

We can thus regard our matrices as $\Bbb Z$-linear combinations of $(r,0,0),(0,m,0)$ and $(0,0,s)$ or equivalently as $\Bbb Z$-linear combinations of the matrices:

$\begin{pmatrix}r&0\\0&0\end{pmatrix}, \begin{pmatrix}0&m\\0&0\end{pmatrix}, \begin{pmatrix}0&0\\0&s\end{pmatrix}$

Formally, then, using the distributive law of matrices, we have:

$(r,m,s)(r',m',s') = [(r,0,0) + (0,m,0) + (0,0,s)][(r',0,0) + (0,m'0) + (0,0,s')]$

$=(r,0,0)(r',0,0) + (r,0,0)(0,m',0) + (r,0,0)(0,0,s') + (0,m,0)(r',0,0) + (0,m,0)(0,m',0) + (0,m,0)(0,0,s') + (0,0,s)(r',0,0) + (0,0,s)(0,m',0) + (0,0,s)(0,0,s')$

so in order to completely determine the multiplication in $A$, we need to know what these 9 terms are. The 3x3 table is a mnemonic SCHEMATIC, to remember which abelian subgroup ($R,M$ or $S$) each term is.

Note that the $1,2$ entry in the matrix is: $rm' + ms'$, which is in $M$ since $M$ is an $(R,S)$-bimodule.

That is, $RM \subseteq M$, and $MS \subseteq M$, as (left or right) scalar product sets; for example:

$RM = \{rm\mid r\in R, M \in M\} \subseteq M$, since $M$ is a (left) $R$-module.
 
Deveno said:
$R$ is a ring, $S$ is a ring, and $M$ is an $(R,S)$-bimodule. A typical element of $A$ is:

$\begin{pmatrix}r&m\\0&s\end{pmatrix}$ with $r\in R, m\in M$, and $s\in S$.

We have an isomorphism (of abelian groups): $A \to R \oplus M \oplus S$ given by:

$\begin{pmatrix}r&m\\0&s\end{pmatrix} \mapsto (r,m,s)$.

We can thus regard our matrices as $\Bbb Z$-linear combinations of $(r,0,0),(0,m,0)$ and $(0,0,s)$ or equivalently as $\Bbb Z$-linear combinations of the matrices:

$\begin{pmatrix}r&0\\0&0\end{pmatrix}, \begin{pmatrix}0&m\\0&0\end{pmatrix}, \begin{pmatrix}0&0\\0&s\end{pmatrix}$

Formally, then, using the distributive law of matrices, we have:

$(r,m,s)(r',m',s') = [(r,0,0) + (0,m,0) + (0,0,s)][(r',0,0) + (0,m'0) + (0,0,s')]$

$=(r,0,0)(r',0,0) + (r,0,0)(0,m',0) + (r,0,0)(0,0,s') + (0,m,0)(r',0,0) + (0,m,0)(0,m',0) + (0,m,0)(0,0,s') + (0,0,s)(r',0,0) + (0,0,s)(0,m',0) + (0,0,s)(0,0,s')$

so in order to completely determine the multiplication in $A$, we need to know what these 9 terms are. The 3x3 table is a mnemonic SCHEMATIC, to remember which abelian subgroup ($R,M$ or $S$) each term is.

Note that the $1,2$ entry in the matrix is: $rm' + ms'$, which is in $M$ since $M$ is an $(R,S)$-bimodule.

That is, $RM \subseteq M$, and $MS \subseteq M$, as (left or right) scalar product sets; for example:

$RM = \{rm\mid r\in R, M \in M\} \subseteq M$, since $M$ is a (left) $R$-module.
Thanks for for the help, Deveno ...

Just working through your post and reflecting on what you have said ...

Thanks again ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top