MHB Examples of uses for the Poisson Eqn in 1d

  • Thread starter Thread starter Carla1985
  • Start date Start date
  • Tags Tags
    1d Poisson
Carla1985
Messages
91
Reaction score
0
Hi all,

I have almost finished my dissertation on using the finite element method to solve the 1D version of the Poisson equation. For the last section I would like to run through a couple of examples but am struggling to find some. Obviously I can make up any equations that satisfy the equation, this is what most of the exercises in the books are, but ideally I would like to use some that have real world value. Could anyone either suggest some examples or point me in the direction of some please.

Thanks
Carla
 
Mathematics news on Phys.org
Well, I don't know if you can shoe-horn such a problem into one dimension, but you use Poisson's equation to find the potential due to source charges in electricity and magnetism, and you can also use the exact same math to find the gravitational potential energy field due to an arrangement of masses. So it's of great importance!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top