Existent solution to the linear system Ax=b

Click For Summary
For the linear system Ax=b with a symmetric matrix A, if vector c spans the null-space of A, then b must be orthogonal to c for a solution to exist. If b is not orthogonal to c, it indicates that the system does not have full rank, leading to the conclusion that no solution exists. The relationship can be analyzed through the expression (Ax)^T c, which results in zero if x is a solution. This reinforces the idea that Ax must be perpendicular to c for a valid solution. Therefore, the lack of orthogonality between b and c confirms the non-existence of a solution to the system.
onako
Messages
86
Reaction score
0
Suppose that the linear system Ax=b is given for some symmetric A, and it is known that vector c spans the null-space of A.

How could one formally show that if b is not orthogonal to c, the solution to the system Ax=b does not exist?
To remind you, the null-space of A contains all vectors u for which Au=0.
 
Physics news on Phys.org
Think about

(Ax)^T c

where x is an arbitrary vector and c spans the null-space.
 
That would imply x^T Ac=x0=0. How do you relate this to the above problem?
 
onako said:
Suppose that the linear system Ax=b is given for some symmetric A, and it is known that vector c spans the null-space of A.

How could one formally show that if b is not orthogonal to c, the solution to the system Ax=b does not exist?
To remind you, the null-space of A contains all vectors u for which Au=0.

Hey onako.

I'm assuming A is nxn (since you said it is symmetric). From this if c spans the null-space it must be an n-dimensional column vector.

From this you can use the decomposition argument that a basis can be broken into something and its perpendicular element (some books write it as v_perp + v = basis). Your zero vector c is perpendicular to b if you wish to have full rank.

If this is not the case, then you can show that you don't have full rank and that a solution should not exist. For specifics you should look at rank nullity, and for the v_perp + v = basis thingy, this is just a result of core linear algebra with spanning, dimension, and orthogonality.
 
onako said:
That would imply x^T Ac=x0=0. How do you relate this to the above problem?

Doesn't this imply that Ax is perpendicular to c?
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K